J@ TEXAS
INSTRUMENTS

MSP430x4xx Family

User’s Guide

January 2010 MSP430
SLAU056J

About This Manual

Preface

Read This First

This manual discusses modules and peripherals of the MSP430x4xx family of
devices. Each discussion presents the module or peripheral in a general
sense. Not all features and functions of all modules or peripherals are present
on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on
an individual device or device family.

Pin functions, internal signal connections and operational parameters differ
from device to device. The user should consult the device-specific data sheet
for these details.

Related Documentation From Texas Instruments

FCC Warning

For related documentation see the web site http://www.ti.com/msp430.

This equipment is intended for use in a laboratory test environment only. It
generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits of computing devices pursuant to subpart
J of part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications, in which
case the user at his own expense will be required to take whatever measures
may be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.

Glossary

Glossary

ACLK
ADC
BOR
BSL
CPU
DAC
DCO
dst
FLL
GIE
INT(N/2)
I/O
ISR
LSB
LSD
LPM
MAB
MCLK
MDB
MSB
MSD
NMI
PC
POR
PUC
RAM
SCG
SFR
SMCLK
SP
SR
src
TOS
WDT

Auxiliary Clock
Analog-to-Digital Converter
Brown-Out Reset
Bootstrap Loader

Central Processing Unit

Digital-to-Analog Converter

Digitally Controlled Oscillator

Destination

Frequency Locked Loop
General Interrupt Enable
Integer portion of N/2
Input/Output

Interrupt Service Routine
Least-Significant Bit
Least-Significant Digit
Low-Power Mode
Memory Address Bus
Master Clock

Memory Data Bus
Most-Significant Bit
Most-Significant Digit
(Non)-Maskable Interrupt
Program Counter
Power-On Reset
Power-Up Clear

Random Access Memory
System Clock Generator
Special Function Register
Sub-System Master Clock
Stack Pointer

Status Register

Source

Top-of-Stack

Watchdog Timer

See Basic Clock Module

See System Resets, Interrupts, and Operating Modes
See www.ti.com/msp430 for application reports
See RISC 16-Bit CPU

See FLL+ Module
See RISC 16-Bit CPU
See FLL+ Module

See System Resets Interrupts and Operating Modes

See Digital I/O

See System Resets Interrupts and Operating Modes

See FLL+ Module

See System Resets Interrupts and Operating Modes
See RISC 16-Bit CPU
See System Resets Interrupts and Operating Modes

See System Resets Interrupts and Operating Modes

See System Resets Interrupts and Operating Modes

See FLL+ Module

See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See Watchdog Timer

Register Bit Conventions

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each
individual bit, and the initial condition:

Register Bit Accessibility and Initial Condition

Key

Bit Accessibility

rw
r
ro
r1
w
w0

wi

(W)

ho

h1

-0,~1
-(0),-(1)

Read/write
Read only
Read as 0
Read as 1
Write only
Write as O
Write as 1

No register bit implemented; writing a 1 results in a pulse.
The register bit is always read as 0.

Cleared by hardware
Set by hardware

Condition after PUC
Condition after POR

vi

Introductioni i i i i i e a s
1.1 ArChiteCtUre . .o e
1.2 Flexible Clock System
1.3 Embedded Emulation
1.4 AdAress SPaCEttt e e e
1.4.1 Flash/ROM
1.4.2 RAM L
1.4.3 PeripheralModules
1.4.4 Special Function Registers (SFRS),
1.4.5 Memory Organizationo,
System Resets, Interrupts, and OperatingModescccovviiininnn..
2.1 System Reset and Initialization i
2.1.1 Brownout Reset (BOR)ot
2.1.2 Device Initial Conditions After System Reset
2.2 M eITUDES oo e
2.2.1 (Non)-Maskable Interrupts (NMI)
222 Maskable Interrupts i
223 Interrupt Processingt
224 Interrupt VECIOrso o
2.2.5 Special Function Registers (SFRS)t
2.3 Operating Modes
2.3.1 Entering and Exiting Low-Power Modes
2.4 Principles for Low-Power Applications i,
2.5 Connectionof Unused Pins i

Contents

2-10
2-12
2-12
2-13
2-15
2-16
2-16

Vi

Contents

3 BRISC16-Bit CPUccciiii ittt iai it aasaatsaasnssannnnscannnnnsnnns 3-1
3.1 CPUINtroduCtiono e e 3-2
3.2 CPU REQISIEIS ..ot 3-4

3.2.1 Program Counter (PC)o 3-4
3.2.2 Stack Pointer (SP)t 3-5
3.2.3 Status Register (SR)o 3-6
3.2.4 Constant Generator Registers CG1andCG2 3-7
3.2.5 General-Purpose Registers R4to R15 it 3-8
3.3 Addressing Modes e 3-9
3.3.1 RegisterMode 3-10
3.32 Indexed MoOde 3-11
3.3.3 SymbolicMode 3-12
3.3.4 Absolute Mode 3-13
3.3.5 Indirect RegisterMode 3-14
3.3.6 Indirect AutoincrementMode 3-15
3.3.7 Immediate Mode 3-16
3.4 Instruction Set 3-17
3.4.1 Double-Operand (Format I) Instructions 3-18
3.4.2 Single-Operand (Format Il) Instructions 3-19
B4 3 JUMPS . o 3-20
3.4.4 Instruction Cyclesand Lengths i, 3-72
3.4.5 Instruction Set Description 3-74

4 16-Bit MSPA30X CPUttt iei it aasansansnssnnnasnseannnnnrnnns 4-1
4.1 CPUINtroduCtion e 4-2
4.2 I erTUDES . oo 4-4
4.3 CPUREQISIEIS ..ot 4-5

4.3.1 The Program Counter PC i 4-5
4.3.2 Stack Pointer (SP) 4-7
4.3.3 Status Register (SR)o 4-9
4.3.4 The Constant Generator Registers CG1and CG2 4-11
4.3.5 The General Purpose Registers R4toR15 4-12
4.4 Addressing Modes e 4-15
441 RegisterMode 4-16
442 Indexed MOdeo i 4-18
443 SymbolicMode 4-24
444 Absolute Mode 4-29
445 Indirect RegisterMode i 4-32
4.4.6 Indirect, AutoincrementMode 4-33
447 Immediate Mode 4-34
4.5 MSP430 and MSP430X Instructions i 4-36
4.5.1 MSP430 InStructionsttt 4-37
4.5.2 MSP430X Extended Instructions, 4-44
4.6 Instruction Set Description 4-58
4.6.1 Extended Instruction Binary Descriptions 4-59
4.6.2 MSP430 InStructions 4-61
4.6.3 Extended Instructions 4-113
4.6.4 Address Instructions 4-156

viii

Contents

5 FLL+ Clock Modulec.iiiiiiiiiiiiii e aaiasesnananssnnnsnsesnnnnnsnnns 5-1
5.1 FLL+ Clock Module Introductionc.c.c i, 5-2
5.2 FLL+ Clock Module Operationo i 5-8

5.2.1 FLL+ Clock features for Low-Power Applications 5-8
5.2.2 Internal Very Low-Power, Low-Frequency Oscillator 5-9
52.3 LFXT1 Oscillator 5-9
524 XT2O0scillator 5-10
5.2.5 Digitally Controlled Oscillator (DCO) 5-11
5.2.6 Frequency Locked Loop (FLL)couiiiiiii e 5-11
5.2.7 DCOMOAUIAtOrot 5-12
5.2.8 Disabling the FLL Hardware and Modulator 5-13
5.2.9 FLL Operation from Low-Power Modes, 5-13
5.2.10 Buffered Clock Output e 5-13
5.2.11 FLL+ Fail-Safe Operation, 5-14
5.3 FLL+ Clock Module Registers oot 5-15
6 Flash Memory Controllercoiiiiiiii it iaiin i aaaiarennnnnnranns 6-1
6.1 Flash Memory Introduction it 6-2
6.2 Flash Memory Segmentation, 6-4
6.2.1 SegmentA on MSP430FG47x, MSP430F47x, MSP430F47x3/4, and
MSP430F471xX DEVICESt 6-5

6.3 Flash Memory Operation i e 6-6
6.3.1 Flash Memory Timing Generatorc.ciiiiiiiiiinaaann. 6-6

6.3.2 Erasing Flash Memory i 6-7

6.3.3 Writing Flash Memory 6-11

6.3.4 Flash Memory Access During WriteorErase 6-17

6.3.5 StoppingaWriteorErase Cycle i, 6-18

6.3.6 MarginalRead Mode 6-18

6.3.7 Configuring and Accessing the Flash Memory Controller 6-18

6.3.8 Flash Memory Controller Interruptso, 6-19

6.3.9 Programming Flash Memory Devices, 6-19

6.4 Flash Memory Registers e 6-21

7 Supply Voltage SUPervisorciiiiiiiiiiiiiiraasanrraasasrannnnssnnns 71
7.1 SVS INtrodUCioNo 7-2
7.2 SVS Operation 7-4

7.21 Configuringthe SVS 7-4
7.2.2 SVS Comparator Operation, 7-4
7.2.3 Changingthe VLDX Bitst i 7-5
724 SVSOperating Range 7-6
7.3 SVS Registers . ..ot 7-7

8 16-Bit Hardware Multipliercuiiiii i it ien e nanreanees 8-1
8.1 Hardware Multiplier Introduction 8-2
8.2 Hardware Multiplier Operation 8-3

8.2.1 Operand Registerst 8-3
8.22 ResultRegisters 8-4
8.2.3 Software Examples 8-5
8.2.4 Indirect Addressing of RESLO, 8-6
8.2.5 Using Interrupts 8-6
8.3 Hardware Multiplier Registers 8-7

Contents

9

10

1"

32-Bit Hardware Multipliert ittt et et ressansannanrnnnns
9.1 32-Bit Hardware Multiplier Introduction
9.2 32-Bit Hardware Multiplier Operation
9.2.1 Operand Registerst
9.22 Result Registerso
9.2.3 Software Examples
9.2.4 Fractional Numbers
9.2.5 Putting It All Together
9.2.6 Indirect Addressing of Result Registers,
9.2.7 UsingInterrupts e
9.2.8 Using DMA ..
9.3 32-Bit Hardware Multiplier Registers i

DMA Controllerttt i i s i i a s e aasaaa s anasaanr s nnnnnn
10.1 DMA INtroduction e
10.2 DMA Operation
10.2.1 DMA AddressingModesot
10.2.2 DMA Transfer Modescooiniiiii i
10.2.3 Initiating DMA Transferso e
10.2.4 Stopping DMA Transfers
10.2.5 DMA Channel Priorities
10.2.6 DMA Transfer Cycle Time i
10.2.7 Using DMA with System Interrupts
10.2.8 DMA Controller Interrupts
10.2.9 DMAIV, DMA Interrupt Vector Generatorcovunn...
10.2.10 Using the USCI_B 12C Module with the DMA Controller
10.2.11 Using ADC12 with the DMA Controllerccoiu...
10.2.12 Using DAC12 With the DMA Controller,
10.2.13 Using SD16 or SD16_A With the DMA Controller
10.2.14 Writing to Flash With the DMA Controller
10.3 DMA Registers

Digital /Oceii i i e a e

11.1 Digital I/O Introduction

11.2 Digital I/O Operation i
11.2.1 Input Register PxIN
11.2.2 Output Registers PxOUT e n
11.2.3 Direction Registers PxDIR

11.2.4 Pullup/Pulldown Resistor Enable Registers PXREN
(MSP430F47x3/4 and MSP430F471xxonly) ...,

11.2.5 Function Select Registers PXSEL
11.2.6 PlandP2Interruptso e
11.2.7 Configuring Unused Port Pins i,
11.3 Digital /O Registers e

Contents

12 Watchdog Timer, Watchdog Timer+ciiiiiiiiii i iai i eainrannenns 1241
12.1 Watchdog Timer Introduction i 12-2
12.2 Watchdog Timer Operation i e 12-4

12.2.1 Watchdog Timer Counter 12-4
12.22 WatchdogMode i e 12-4
12.2.3 Interval TimerMode e 12-4
12.2.4 Watchdog Timer Interrupts i 12-5
12.25 WDT+ Enhancements i 12-5
12.2.6 Operationin Low-PowerModes, 12-6
12.2.7 Software Examples 12-6
12.3 Watchdog Timer Registers e 12-7

13 Basic TIMerT . ..o i i i et ie s san e a s as s maa s nansnanrnnnrnns 13-1
13.1 Basic Timer1 Introduction i 13-2
13.2 Basic Timer1 Operation i 13-4

13.2.1 Basic Timer1 CounterOnet 13-4
13.2.2 Basic Timer1 Counter TWOt een 13-4
13.2.3 16-BitCounter Modet i 13-4
13.2.4 Basic Timer1 Operation: Signal fLCD 13-5
13.2.5 Basic Timert Interrupts i 13-5
13.3 Basic Timer1 Registers e 13-6

14 Real TIMe ClOCKttt i ittt ee s e s asan s annnsasnnnnnns 14-1
141 RTC INtroduction oo e 14-2
14.2 Real-Time Clock Operation i 14-4

14.2.1 Counter Mode 14-4
1422 CalendarModettt 14-5
14.2.3 RTC and Basic Timer1 Interaction 14-5
14.2.4 Real-Time Clock Interruptso i 14-6
14.3 Real-Time Clock Registers i e 14-7

L T 1113 =T 15-1
15.1 Timer_A Introduction e 15-2
15.2 Timer_A Operationt e 15-4

15.2.1 16-Bit Timer Countert e 15-4
15.2.2 Startingthe Timer 15-5
15.2.3 TimerMode Controlt 15-5
15.2.4 Capture/Compare BIOCKSt 15-11
15.2.5 Output Unit ... 15-13
15.2.6 Timer_A Interrupts e 15-17
15.3 Timer_A Registerso e 15-19

xi

Contents

L T 1T 1= = 16-1
16.1 Timer_B Introduction 16-2
16.1.1 Similarities and Differences From Timer_A 16-2

16.2 Timer_B Operation i e 16-4
16.2.1 16-Bit Timer Countert i i 16-4
16.2.2 Startingthe Timer e 16-5

16.2.3 Timer Mode Controlt i e 16-5

16.2.4 Capture/Compare BIOCKS 16-11
16.2.5 Output Unit ... 16-14
16.2.6 Timer_B Interrupts i 16-18

16.3 Timer_B Registers e 16-20
17 USART Peripheral Interface, UARTModecciiiiiiiiiii i inannnnns 17-1
17.1 USART Introduction: UARTModeot 17-2
17.2 USART Operation: UART Modeo 17-4
17.2.1 USART Initializationand Reset i, 17-4
17.2.2 Character Format i e e 17-4
17.2.3 Asynchronous Communication Formats 17-5
17.2.4 USART Receive Enable i, 17-9
17.2.5 USART TransmitEnable i, 17-10
17.2.6 USART Baud Rate Generation, 17-11
17.2.7 USART INterrupts e 17-17

17.3 USART Registers: UART MOdeot e 17-21
18 USART Peripheral Interface, SPIModec.coiiiiiiiiiii it iiiannnns 18-1
18.1 USART Introduction: SPIModet 18-2
18.2 USART Operation: SPIMOde e 18-4
18.2.1 USART Initializationand Reset 18-4
18.2.2 Master Modeo e 18-5
18.2.3 Slave MOQE 18-6
18.2.4 SPIENADIe e 18-7
18.2.5 Serial Clock Control i i 18-9
18.2.6 SPlIINterrupts 18-11

18.3 USART Registers: SPIMode i 18-13

Xii

Contents

19 Universal Serial Communication Interface, UART Mode 19-1
19.1 USCI OVEIVIEW . ..ot e e e e et e 19-2
19.2 USCI Introduction: UART Modet 19-3
19.3 USCI Operation: UART Modet i 19-5

19.3.1 USCI Initializationand Reset i, 19-5
19.3.2 Character Format i e e 19-5
19.3.3 Asynchronous Communication Formats 19-6
19.3.4 Automatic Baud Rate Detection L. 19-10
19.3.5 IrDA Encodingand Decodingc.ooiuiiiiiiiiniiiann. 19-12
19.3.6 Automatic Error Detection 19-13
19.3.7 USCIReceive Enable i, 19-14
19.3.8 Receive Data Glitch Suppression i, 19-14
19.3.9 USCI TransmitEnable i 19-15
19.3.10 UART Baud Rate Generationot 19-15
19.3.11 SettingaBaud Rate i 19-18
19.3.12 Transmit Bit TIMingo e 19-19
19.3.13 Receive Bit Timing oo 19-20
19.3.14 Typical Baud Rates and Errors it 19-21
19.3.15 Using the USCI Module in UART Mode with Low-Power Modes 19-25
19.3.16 USCI INterruptso e 19-25
19.4 USCI Registers: UART Modettt i e 19-27

20 Universal Serial Communication Interface, SPIMode 20-1
20.1 USCI OVEIVIEW . oottt e e e e e e 20-2
20.2 USCI Introduction: SPIMOdEt e 20-3
20.3 USCI Operation: SPIMOGEot 20-5

20.3.1 USClI Initializationand Reset i, 20-6
20.3.2 Character Format i 20-6
20.3.3 Master Modeot e 20-7
20.3.4 Slave MOde oo e 20-9
20.3.5 SPIEnablecoi e 20-10
20.3.6 Serial Clock Controlt e e 20-11
20.3.7 Using the SPI Mode with Low PowerModes 20-12
20.3.8 SPIINterrupts 20-12
20.4 USCI Registers: SPIMOdEo i 20-14

21 Universal Serial Communication Interface,12CModecccoiioa.. 21-1
211 USCI OVEIVIEW . .ottt e e e 21-2
21.2 USCI Introduction: 1I2C Modeot e e 21-3
21.3 USCI Operation: I2C Mode oot i 21-5

21.3.1 USClI Initializationand Reset i ... 21-6
21.32 12C SerialData . ..ot 21-7
21.3.3 12C Addressing Modest 21-8
21.3.4 12C Module OperatingModesoiiiiiiiiiiiiiinn, 21-9
21.3.5 12C Clock Generation and Synchronization 21-22
21.3.6 Using the USCI Module in I2C Mode With Low-Power Modes 21-23
21.3.7 USClInterruptsin 2CModec.c.coiiiiiiiiii i, 21-24
21.4 USCI Registers: I2C MOdeot i 21-26

xiii

Contents

22

23

24

Xiv

L
22,1 OA INtroduCtion
22.2 OA Operationt
2221 OA Amplifier ..o
22.2.2 OA INPUL
22.2.3 OA OUIPUL .o
22.2.4 OA Configurationsciiuuiiii i
22.3 OA Modules in MSP430FG42X0 DeVICeSo it i
22.3.1 OA Amplifier ..o
22.3.2 OA INPUIS .o
22.3.3 OA OUIPULS . oo
22.3.4 OA Configurationsiiuuiiiii e
22.3.5 Switch Control
22.3.6 Offset Calibration i
22.4 OA Modules in MSP430FG47x Devices
22,41 OA Amplifier ..o
22.4.2 OA INPUIS .o
22.4.3 OA OUIPULS . .o
22.4.4 OA Configurationsoiuuiiiii i
22.4.5 Switch Control of the FG47x devices,
22.4.6 Offset Calibration
225 OA Registers
22.6 OA Registers in MSP430FG42x0 Devicesoouiin i n
22.7 OA Registers in MSP430FG47x DeviCescovii i

Comparator_Aoiii i i aai i
23.1 Comparator_A Introductionttt
23.2 Comparator_A Operationt
23.2.1 COmMPAaratort
23.2.2 Input Analog Switches
23.2.3 Output Filter
23.2.4 Voltage Reference Generatorcooiiiiiiiiiiiinaannn.
23.2.5 Comparator_A, Port Disable Register CAPD
23.2.6 Comparator_A Interrupts oo
23.2.7 Comparator_A Used to Measure Resistive Elements
23.3 Comparator_A Registerst

Comparator A+oiii i i i aa e e
24.1 Comparator_A+ Introduction
24.2 Comparator_A+ Operationt
2421 COMPAratorttt
24.2.2 Input Analog Switches i
24.2.3 InputShort Switch
2424 Output Filter
24.2.5 Voltage Reference Generatorcoiiiiiiiiiiiiinaaannn.
24.2.6 Comparator_A+, Port Disable Register CAPD
24.2.7 Comparator_ A+ Interrupts
24.2.8 Comparator_A+ Used to Measure Resistive Elements
24.3 Comparator_A+ Registerst e

Contents

25 LCD Controllerocuiiiiiiiii i iaaia s aasaacsnananssannnnssannnnnssnns 25-1
25.1 LCD Controller Introductioni i i 25-2
25.2 LCD Controller Operationt e 25-4

25.2.1 LCD MEMOTIY . oo ettt it et e et e e e et e e e e e 25-4
25.2.2 Blinkingthe LCD 25-4
25.2.3 LCD Timing Generationouiuiiii i 25-4
25.2.4 LCD Voltage Generationottt 25-5
25.2.5 LCD OUIPULS . . ettt ettt e e e e e 25-5
25.2.6 StaticMode 25-6
25.2.7 2-MUX MOdE 25-9
25.2.8 3-MUXMOde 25-12
25.2.9 4-MUXMOAE 25-15
25.3 LCD Controller Registersot i 25-18

26 LCD_ACoNtrollerciuiiiiiiiii i iaiiisssaasaassnananssnnnsnssannnnnsnnns 26-1
26.1 LCD_A Controller Introduction 26-2
26.2 LCD_A Controller Operationt 26-4

26.2.1 LCD MEMOTIY . .o ettt it et e et et e et e e e 26-4
26.2.2 Blinkingthe LCD 26-4
26.2.3 LCD_A Voltage And Bias Generation 26-5
26.2.4 LCD Timing Generationoiiuuiiiii i 26-8
26.2.5 LCD OUIPULS . .ottt ittt et e e 26-8
26.2.6 StaticMode 26-9
26.2.7 2-MUX MOE 26-12
26.2.8 3-MUXMOAE 26-15
26.2.9 4-MUXMOAE 26-18
26.3 LCD Controller Registersot 26-21

P27 A N 0 L0 271
27.1 ADC10 Introduction 27-2
27.2 ADCTI0 Operationt 27-4

2721 10-Bit ADC COre . .ottt e 27-4
27.2.2 ADC10 Inputs and Multiplexeroiiiiiiiiiiii . 27-5
27.2.3 Voltage Reference Generatorcoiiiiiiiiiinannnn. 27-6
27.2.4 Auto Power-DOWNn 27-6
27.2.5 Sample and Conversion TiMiNGttt 27-7
27.2.6 Conversion Modesttt 27-9
27.2.7 ADC10 Data Transfer Controller, 27-15
27.2.8 Using the Integrated Temperature Sensor cooua.. 27-21
27.2.9 ADC10 Grounding and Noise Considerations 27-22
27.210 ADC10 INterrupts oe i 27-23
27.3 ADCTI0 Registerst 27-24

XV

Contents

P28 N 0 L0 28-1
28.1 ADCI2 Introductionttt 28-2
28.2 ADCT12 0perationt 28-4

28.2.1 12-Bit ADC COre . .ottt e e 28-4
28.2.2 ADC12 Inputs and Multiplexerooiiiiiiiiiiiinn. 28-5
28.2.3 Voltage Reference Generator, 28-6
28.2.4 Auto Power-DOWNn 28-6
28.2.5 Sample and Conversion TIMINGttt 28-7
28.2.6 Conversion MemOrYttt 28-10
28.2.7 ADC12 Conversion MOdest 28-10
28.2.8 Using the Integrated Temperature Sensorcoua.. 28-16
28.2.9 ADC12 Grounding and Noise Considerations 28-17
28.2.10 ADCI12 INterrupts . ..ot 28-18
28.3 ADCTI2 Registerst 28-20

P20] 0 < 29-1
29.1 SD16 INtroduCtioNottt 29-2
29.2 SD16 Operationt 29-4

29.2.1 ADC COrE .ottt et e e 29-4
29.2.2 AnalogInput Range and PGA i 29-4
29.2.3 Voltage Reference Generatorcoiiiiiiiiiiinnaannn. 29-4
29.2.4 Auto Power-DOWN 29-4
29.2.5 Analog Input Pair Selection i 29-5
29.2.6 Analog Input Characteristics i i 29-6
29.2.7 Digital Filter 29-7
29.2.8 Conversion Memory Registers: SD16MEMX 29-10
29.2.9 Conversion MOdesttt 29-11
29.2.10 Conversion Operation Using Preload 29-14
29.2.11 Using the Integrated Temperature Sensor cou... 29-16
29.212 1Interrupt Handling 29-17
29.3 SD16 ReQiSters . ..ottt 29-19

1 0 < T 30-1
30.1 SD16_A Introduction i 30-2
30.2 SD16_A Operationttt 30-5

B0.2.1 ADC COrE .ottt et et e 30-5
30.2.2 AnalogInput Range and PGA i 30-5
30.2.3 Voltage Reference Generatorooiiiiiiiiiiiiinanannn. 30-5
30.2.4 Auto Power-DOWNn 30-5
30.2.5 Analog Input Pair Selection i 30-6
30.2.6 Analog Input Characteristics i i 30-7
30.2.7 Digital Filter 30-8
30.2.8 Conversion Memory Register: SD16MEMX 30-12
30.2.9 Conversion MOdesSttt 30-14
30.2.10 Conversion Operation Using Preload, 30-17
30.2.11 Using the Integrated Temperature Sensorcou... 30-19
30.2.12 Interrupt Handling 30-20
30.3 SD16_A Registers 30-22

XVi

Contents

T Y 0 31-1
31.1 DACT12Introductiont 31-2
31.2 DACTI2 0peration 31-6

31.2.1 DACT2 GO0 . oottt it et e et e e 31-6
31.2.2 DAC12Reference 31-7
31.2.3 Updating the DAC12 Voltage Output 31-8
31.2.4 DAC12_ xDAT Data Format, 31-9
31.2.5 DAC12 Output Amplifier Offset Calibration 31-10
31.2.6 Grouping Multiple DAC12 Modules, 31-11
31.2.7 DACI2 INterrupts 31-12
31.3 DACTI2 Registerst 31-13

R T - T o T | 32-1
32.1 Scan IF Introduction i e 32-2
32.2 Scan IF Operationt 32-4

32.2.1 ScanIF Analog FrontEnd 32-4
32.2.2 Scan IF Timing State Machine i i, 32-14
32.2.3 Scan IF Processing State Machine, 32-20
32.2.4 Scan IF Debug Registero 32-26
32.2.5 Scan IF Interruptso 32-27
32.2.6 Using the Scan IF with LC Sensors, 32-28
32.2.7 Using the Scan IF With Resistive Sensors 32-32
32.2.8 Quadrature Decoding ...t 32-33
32.3 Scan IF Reqisters oot 32-35

33 Embedded Emulation Module (EEM)coiiiiiiiiiiiiiiiiinnennannnennns 33-1
33.1 EEM Introduction 33-2
33.2 EEMBUIIdING BIOCKS 33-4

B3 2.1 THgOEIS . ottt 33-4
33.2.2 Trigger SEQUENCETottt et 33-5
33.2.3 State Storage (Internal Trace Buffer) coiia.. 33-5
33.2.4 Clock Control 33-5
33.3 EEM Configurationst 33-6

xvii

Xviii

Chapter 1

Introduction

This chapter describes the architecture of the MSP430.

Topic Page
ol AEMIEEE 000000000000000000000000060000000000000000000000000 1-2
1.2 Flexible Clock Systemc.coiiiiiiiiii it iiianaiinnnns 1-2
1.3 EmbeddedEmulationccoiiiiiiiiiiiii i 1-3
1.4 Address SPace........c.cuuuiiiiiirrrennnnnnnnrrrarnnnnnnnnnnnns 1-4

1-1

Architecture

1.1 Architecture

The MSP430 incorporates a 16-bit RISC CPU, peripherals, and a flexible clock
system that interconnect using a von Neumann common memory address bus
(MAB) and memory data bus (MDB). Partnering a modern CPU with modular
memory-mapped analog and digital peripherals, the MSP430 offers solutions
for demanding mixed-signal applications.

Key features of the MSP430x4xx family include:

[Ultralow-power architecture extends battery life
B 0.1-uA RAM retention
B 0.8-uA real-time clock mode

W 250-uA/ MIPS active

(1 High-performance analog ideal for precision measurement
B 12-bit or 10-bit ADC — 200 ksps, temperature sensor, Vet
B 12-bit dual DAC
B Comparator-gated timers for measuring resistive elements

B Supply voltage supervisor

(O 16-bit RISC CPU enables new applications at a fraction of the code size.
Large register file eliminates working file bottleneck
Compact core design reduces power consumption and cost

Optimized for modern high-level programming

Only 27 core instructions and seven addressing modes

B Extensive vectored-interrupt capability

[In-system programmable Flash permits flexible code changes, field
upgrades, and data logging

1.2 Flexible Clock System

The clock system is designed specifically for battery-powered applications. A
low-frequency auxiliary clock (ACLK) is driven directly from a common 32-kHz
watch crystal. The ACLK can be used for a background real-time clock self
wake-up function. An integrated high-speed digitally controlled oscillator
(DCO) can source the master clock (MCLK) used by the CPU and high-speed
peripherals. By design, the DCO is active and stable in less than 6 us.
MSP430-based solutions effectively use the high-performance 16-bit RISC
CPU in very short bursts.

(1 Low-frequency auxiliary clock = Ultralow-power standby mode

(1 High-speed master clock = High performance signal processing

1-2 Introduction

Embedded Emulation

Figure 1-1.MSP430 Architecture

| ‘.
Clock [ACLK Flash/ . ||) ||) |

| RAM Peripheral Peripheral[—] Peripheral

| System . SMCLK ROM [| [| =

= MCLK NN NN I\ I\ I\ 4 |

I =

| o|| [MAB1eBi| | S »

, gl peeesy L) |

||Risccru| |8 I
16-Bit & |

I < I

| EH %

| | MDB 16-Bit Olr113v N MDB 8-Bit > l

Y . 1
| |
JTAG |

| NV N\ N\ A N v AR J l

| ACLK —» m — —

| SMCLK —» Watchdog| | Peripheral Peripheral|[| Peripheral[| Peripheral l

| |

| I

___________________________________ 4

1.3 Embedded Emulation

Dedicated embedded emulation logic resides on the device itself and is
accessed via JTAG using no additional system resources.

The benefits of embedded emulation include:

1 Unobtrusive development and debug with full-speed execution,
breakpoints, and single steps in an application are supported.

(1 Development is in-system and subject to the same characteristics as the
final application.

(1 Mixed-signal integrity is preserved and not subject to cabling interference.

Introduction 1-3

Address Space

1.4 Address Space

The MSP430 von Neumann architecture has one address space shared with
special function registers (SFRs), peripherals, RAM, and Flash/ROM memory
as shown in Figure 1-2. See the device-specific data sheets for specific
memory maps. Code access are always performed on even addresses. Data

can be accessed as bytes or words.

The addressable memory space is 128 KB with future expansion planned.

Figure 1-2. Memory Map
A

v

10000h

Flash/ROM

OFFFFh
OFFEOh

Interrupt Vector Table

OFFDFh

Flash/ROM

It
v

0200h

RAM

01FFh

0100h

16-Bit Peripheral Modules

OFFh
010h

8-Bit Peripheral Modules

OFh
Oh

Special Function Registers

1.4.1 Flash/ROM

The start address of Flash/ROM depends on the amount of Flash/ROM
present and varies by device. The end address for Flash/ROM is OFFFFh for
devices with less than 60kB of Flash/ROM; otherwise, it is device dependent.
Flash can be used for both code and data. Word or byte tables can be stored
and used in Flash/ROM without the need to copy the tables to RAM before
using them.

The interrupt vector table is mapped into the upper 16 words of Flash/ROM
address space, with the highest priority interrupt vector at the highest
Flash/ROM word address (OFFFEh).

1-4 Introduction

Access

Word/Byte

Word/Byte

Word/Byte

Word/Byte

Word

Byte

Byte

Address Space

1.4.2 RAM

RAM starts at 0200h. The end address of RAM depends on the amount of RAM
present and varies by device. RAM can be used for both code and data.

1.4.3 Peripheral Modules

Peripheral modules are mapped into the address space. The address space
from 0100 to 01FFh is reserved for 16-bit peripheral modules. These modules
should be accessed with word instructions. If byte instructions are used, only
even addresses are permissible, and the high byte of the result is always 0.

The address space from 010h to OFFh is reserved for 8-bit peripheral modules.
These modules should be accessed with byte instructions. Read access of
byte modules using word instructions results in unpredictable data in the high
byte. If word data is written to a byte module only the low byte is written into
the peripheral register, ignoring the high byte.

1.4.4 Special Function Registers (SFRs)

Some peripheral functions are configured in the SFRs. The SFRs are located
in the lower 16 bytes of the address space and are organized by byte. SFRs
must be accessed using byte instructions only. See the device-specific data
sheets for applicable SFR bits.

1.4.5 Memory Organization

Bytes are located at even or odd addresses. Words are only located at even
addresses as shown in Figure 1-3. When using word instructions, only even
addresses may be used. The low byte of a word is always an even address.
The high byte is at the next odd address. For example, if a data word is located
at address xxx4h, then the low byte of that data word is located at address
xxx4h, and the high byte of that word is located at address xxx5h.

Introduction 1-5

Address Space

Figure 1-3. Bits, Bytes, and Words in a Byte-Organized Memory

o0 xxxAh

15 14 .. Bits... 9 8 xxx9h
7 6 .. Bits .. 1 0 xxx8h
Byte xxx7h

Byte xxx6h

Word (High Byte) xxx5h

Word (Low Byte) xxx4h

eoo xxx3h

1-6 Introduction

Chapter 2

System Resets, Interrupts,
and Operating Modes

This chapter describes the MSP430x4xx system resets, interrupts, and
operating modes.

Topic Page
2.1 System Reset and Initialization ool 2-2
727} [MEIUPS cooooo000 2-5
2.3 OperatingModesoiiiiiiiiiiiiiiananinnnrenannns 2-13
2.4 Principles for Low-Power Applicationsc.ocvuunn 2-16
2,5 Connectionof UnusedPinsccvviiiiiiiiinnnnnnnnns 2-16

2-1

System Reset and Initialization

2.1 System Reset and Initialization

The system reset circuitry shown in Figure 2—1 sources both a power-on reset
(POR) and a power-up clear (PUC) signal. Different events trigger these reset
signals and different initial conditions exist depending on which signal was
generated.

Figure 2-1. Power-On Reset and Power-Up Clear Schematic

Vee

Brownout

Reset POR
»S Laich ——» POR

| (R
ov ~ 50us

SVS_POR :l I: b

RST/NMI
WDTNMIt
WDTTMSEL! m—

)
wDTQn } Resetwd1

WDTIFGt —E
EQUT) Resetwd2

KEYV
(from flash module) +

PUC

T 0O nonon

+ YyYVYVY

MCLK
T From watchdog timer peripheral module

A POR is a device reset. A POR is only generated by the following three
events:

(1 Powering up the device
[A low signal on the RST/NMI pin when configured in the reset mode
(1 An SVS low condition when PORON = 1.

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

1 A POR signal

[Watchdog timer expiration when in watchdog mode only
(1 Watchdog timer security key violation
d

A Flash memory security key violation

2-2 System Resets, Interrupts, and Operating Modes

2.1.1 Brownout Reset (BOR)

System Reset and Initialization

All MSP430x4xx devices have a brownout reset circuit. The brownout reset
circuit detects low supply voltages such as when a supply voltage is applied
to or removed from the Vg terminal. The brownout reset circuit resets the
device by triggering a POR signal when power is applied or removed. The

operating levels are shown in Figure 2-2.

The POR signal becomes active when V¢ crosses the Vecstart) level. It
remains active until Vgc crosses the Vg 1) threshold and the delay tgor)
elapses. The delay tgoR is adaptive being longer for a slow ramping Vcc. The
hysteresis Vhyss_iT-) ensures that the supply voltage must drop below
V(B_iT-) to generate another POR signal from the brownout reset circuitry.

Figure 2-2. Brownout Timing

V |
hyg(B_IT-)
Ve v 1
VBT T4 —:— ——
]

Vecstarty |

Set Signal for
POR circuitry

v

{BOR)

As the V(g_i1_) level is significantly above the Vyn) level of the POR circuit,
the BOR provides a reset for power failures where V¢ does not fall below
V(min). See the device-specific data sheet for parameters.

System Resets, Interrupts, and Operating Modes 2-3

System Reset and Initialization

2.1.2 Device Initial Conditions After System Reset

After a POR, the initial MSP430 conditions are:

4
4

L

Software Initialization

2-4

The RST/NMI pin is configured in the reset mode.
I/O pins are switched to input mode as described in the Digital I/O chapter.

Other peripheral modules and registers are initialized as described in their
respective chapters in this manual.

Status register (SR) is reset.
The watchdog timer powers up active in watchdog mode.

Program counter (PC) is loaded with address contained at reset vector
location (OFFFEh). CPU execution begins at that address.

After a system reset, user software must initialize the MSP430 for the
application requirements. The following must occur:

4
4
4

Initialize the SP, typically to the top of RAM.
Initialize the watchdog to the requirements of the application.

Configure peripheral modules to the requirements of the application.

Additionally, the watchdog timer, oscillator fault, and flash memory flags can
be evaluated to determine the source of the reset.

System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.2 Interrupts

The interrupt priorities are fixed and defined by the arrangement of the
modules in the connection chain as shown in Figure 2—-3. The nearer a module
is to the CPU/NMIRS, the higher the priority. Interrupt priorities determine what
interrupt is taken when more than one interrupt is pending simultaneously.

There are three types of interrupts:

[System reset
[(Non)-maskable NMI
(1 Maskable

Figure 2-3. Interrupt Priority

Priority High Low
GMIRS
(-
Module Module WDT Module Module
CPU .
NMIRS 1 2 Timer m n
1 2 12 1 2 1 2 1
» — —
X | ANE Y, A A IR
PUC y) “Bus ’)
Grant
PUC
L OSCfault
Cirouit Flash ACCV
N Reset/NMI
T PN
WDT Security Key L
\/ Flash Security Key \/ \/ \/ \/ \/ \/

MAB - 5LSBs >

System Resets, Interrupts, and Operating Modes 2-5

System Reset and Initialization

2.2.1 (Non)-Maskable Interrupts (NMI)

Reset/NMI Pin

(Non)-maskable NMI interrupts are not masked by the general interrupt enable
bit (GIE), but are enabled by individual interrupt enable bits (ACCVIE, NMIIE,
OFIE). When a NMI interrupt is accepted, all NMI interrupt enable bits are
automatically reset. Program execution begins at the address stored in the
(non)-maskable interrupt vector, OFFFCh. User software must set the required
NMI interrupt enable bits for the interrupt to be re-enabled. The block diagram
for NMI sources is shown in Figure 2—4.

A (non)-maskable NMI interrupt can be generated by three sources:
O An edge on the RST/NMI pin when configured in NMI mode
(1 An oscillator fault occurs

(1 An access violation to the flash memory

At power-up, the RST/NMI pin is configured in the reset mode. The function
of the RST/NMI pins is selected in the watchdog control register WDTCTL. If
the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in the reset
vector, OFFFEh.

If the RST/NMI pin is configured by user software to the NMI function, a signal
edge selected by the WDTNMIES bit generates an NMI interrupt if the NMIIE
bit is set. The RST/NMI flag NMIIFG is also set.

Note: Holding RST/NMI Low

When configured in the NMI mode, a signal generating an NMI event should
not hold the RST/NMI pin low. If a PUC occurs from a different source while
the NMI signal is low, the device will be held in the reset state because a PUC
changes the RST/NMI pin to the reset function.

Note: Modifying WDTNMIES

When NMI mode is selected and the WDTNMIES bit is changed, an NMI can
be generated, depending on the actual level at the RST/NMI pin. When the
NMI edge select bit is changed before selecting the NMI mode, no NMI is
generated.

2-6 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Figure 2-4. Block Diagram of (Non)-Maskable Interrupt Sources

ACCV —¢
ACCVIF
T D
FCTL3.2
ACCVIE

IE1.5
Clear

v 3 L

RST/NMI

Y

Flash Module

+

POR

KEYV SVS_POR

Y v

+

PUC

BOR

Y

i > —p— PUC
. System Reset
_F v Generator
> —p— POR
A A A
Y NMIFG
S
»— NMIR
IFG1.4 N [WDTTMSEL
ei WDTNMIES + WDTNMI WDTQn EQU PUC POR
Pue T % I L J'
NMIIE e
| S WDTIFG |
IE1.4 I } IRQ |
Clei | IFG1.0 e |
| Clear |
PUC _+ | wDT |
| Counter
OSCFault W | POR :
OFIFG I |
S \ | |
IFG1.1 | | |
: IRQA |
OFIE | WDTTMSEL :
| WDTIE I
IE1.1 | I
Clear |
IE1.0 |
NMI_IRQA Clear
PUC —+ 1 : I I
I
| Watchdog Timer Module PUC |
IRQA: Interrupt Request Accepted \ -~~~ - "-- _ __ __ |
System Resets, Interrupts, and Operating Modes

S

2-7

System Reset and Initialization

Oscillator Fault

The oscillator fault signal warns of a possible error condition with the crystal
oscillator. The oscillator fault can be enabled to generate an NMI interrupt by
setting the OFIE bit. The OFIFG flag can then be tested by NMI the interrupt
service routine to determine if the NMI was caused by an oscillator fault.

A PUC signal can trigger an oscillator fault, because the PUC switches the
LFXT1 to LF mode, therefore switching off the HF mode. The PUC signal also
switches off the XT2 oscillator.

Flash Access Violation

The flash ACCVIFG flag is set when a flash access violation occurs. The flash
access violation can be enabled to generate an NMI interrupt by setting the
ACCVIE bit. The ACCVIFG flag can then be tested by NMI the interrupt service
routine to determine if the NMI was caused by a flash access violation.

2-8 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Example of an NMI Interrupt Handler

The NMI interrupt is a multiple-source interrupt. An NMI interrupt automatically
resets the NMIIE, OFIE, and ACCVIE interrupt-enable bits. The user NMI
service routine resets the interrupt flags and re-enables the interrupt-enable
bits according to the application needs as shown in Figure 2-5.

Figure 2-5. NMI Interrupt Handler

Reset by HW:

Start of NMI Interrupt Handler
OFIE, NMIIE, ACCVIE

»
L

Reset OFIFG

Reset ACCVIFG

Reset NMIIFG

v

+

v

User’s Software,

User’s Software,

User’s Software,

Oscillator Fault Flash Access External NMI
Handler Violation Handler Handler
Optional v
RETI)
End of NMI Interrupt
Handler

Note: Enabling NMI Interrupts with ACCVIE, NMIIE, and OFIE

To prevent nested NMI interrupts, the ACCVIE, NMIIE, and OFIE enable bits
should not be set inside of an NMI interrupt service routine.

2.2.2 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability
including the watchdog timer overflow in interval-timer mode. Each maskable
interrupt source can be disabled individually by an interrupt enable bit, or all
maskable interrupts can be disabled by the general interrupt enable (GIE) bit
in the status register (SR).

Each individual peripheral interrupt is discussed in the associated peripheral
module chapter in this manual.

System Resets, Interrupts, and Operating Modes 2-9

System Reset and Initialization

2.2.3 Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt
enable bit and GIE bit are set, the interrupt service routine is requested. Only

the

individual enable bit must be set for (non)-maskable interrupts to be

requested.

Interrupt Acceptance

The

interrupt latency is six cycles, starting with the acceptance of an interrupt

request and lasting until the start of execution of the first instruction of the
interrupt-service routine, as shown in Figure 2—6. The interrupt logic executes
the following:

7)

Any currently executing instruction is completed.
The PC, which points to the next instruction, is pushed onto the stack.
The SR is pushed onto the stack.

The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

The interrupt request flag resets automatically on single-source flags.
Multiple source flags remain set for servicing by software.

The SR is cleared with the exception of SCGO, which is left unchanged.
This terminates any low-power mode. Because the GIE bit is cleared,
further interrupts are disabled.

The content of the interrupt vector is loaded into the PC: the program
continues with the interrupt service routine at that address.

Figure 2-6. Interrupt Processing

SP —»

Before After
Interrupt Interrupt
ltem1 ltem1
ltem2 TOS ltem2
PC
SP —» SR TOS

2-10 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Return From Interrupt
The interrupt handling routine terminates with the instruction:
RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles to execute the following actions
and is illustrated in Figure 2-7.

1) The SR with all previous settings pops from the stack. All previous settings
of GIE, CPUOFF, etc. are now in effect, regardless of the settings used
during the interrupt service routine.

2) The PC pops from the stack and begins execution at the point where it was
interrupted.

Figure 2-7. Return From Interrupt

Before After
Return From Interrupt

ltem1 ltem1
ltem2 SP —» ltem2 TOS
PC PC
SP —» SR TOS SR

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service
routine. When interrupt nesting is enabled, any interrupt occurring during an
interrupt service routine will interrupt the routine, regardless of the interrupt
priorities.

System Resets, Interrupts, and Operating Modes 2-11

System Reset and Initialization

224

Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the
address range OFFFFh to OFFEOh as described in Table 2—-1. A vector is
programmed by the user with the 16-bit address of the corresponding interrupt

service routine. Some devices may contain more interrupt vectors. See the

device-specific data sheet for the complete interrupt vector list.

Table 2-1.Interrupt Sources,Flags, and Vectors

INTERRUPT SOURCE INT'I:EE:;JPT IN?'TE?RLEUNII’T AI‘)ND?;?E[;S PRIORITY
rPeosve\zlte rvyeﬂéﬁgtoeg;?al &VSJ\'/FG Reset OFFFEh 15, highest
flash password
NMI, oscillator fault, NMIIFG (non)-maskable
flash memory access OFIFG (non)-maskable OFFFCh 14
violation ACCVIFG (non)-maskable
Device-specific OFFFAh 13
Device-specific OFFF8h 12
Device-specific OFFF6h 11
Watchdog timer WDTIFG maskable OFFF4h 10
Device-specific OFFF2h 9
Device-specific OFFFOh 8
Device-specific OFFEEh 7
Device-specific OFFECh 6
Device-specific OFFEAhN 5
Device-specific OFFE8h 4
Device-specific OFFE6h 3
Device-specific OFFE4h 2
Device-specific OFFE2h 1
Device-specific OFFEOh 0, lowest

2.2.5 Special Function Registers (SFRs)

2-12

Some module enable bits, interrupt enable bits, and interrupt flags are located
in the SFRs. The SFRs are located in the lower address range and are
implemented in byte format. SFRs must be accessed using byte instructions.

See the device-specific data sheet for the SFR configuration.

System Resets, Interrupts, and Operating Modes

Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2-9.

The operating modes take into account three different needs:
(1 Ultralow-power
(1 Speed and data throughput

(1 Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2-8.

Figure 2-8. Typical Current Consumption of 41x Devices vs Operating Modes

ICC/pA @ 1 MHz

315 .~ 300
270
225
180
135
90
42 1744 ! 0.9 0.7 ! 0.1 O‘Lg
AM LPMO LPM2 LPM3 LPM4
Operating Modes

The low-power modes 0 to 4 are configured with the CPUOFF, OSCOFF,
SCGO, and SCG1 bits in the status register. The advantage of including the
CPUOFF, OSCOFF, SCGO, and SCG1 mode-control bits in the status register
is that the present operating mode is saved onto the stack during an interrupt
service routine. Program flow returns to the previous operating mode if the
saved SR value is not altered during the interrupt service routine. Program flow
can be returned to a different operating mode by manipulating the saved SR
value on the stack inside of the interrupt service routine. The mode-control bits
and the stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

System Resets, Interrupts, and Operating Modes 2-13

Operating Modes

Figure 2-9. MSP430x4xx Operating Modes For FLL+ Clock System

RST/NMI

Reset Active Ve On
POR
WDT Active,
Time Expired, Overflow WDTIFG = 1 WDTIFG =0
PUC) RST/NMIis Reset Pin
WDTIFG =1 WDT is Active
) RST/NMI
WDT Actl\{e, _ NMI Active
Security Key Violation
Active Mode
CPUOFF =1 ~ CPUlsActive CPUOFF = 1
SCGO0 =0 Peripheral Modules Are Active OSCOFF =1
SCG1=0 SCGO0 =1
SCG1 =1
LPMO
CPU Off, FLL+ On, LPM4
41x/42x MCLK On, 43x/44x CPU Off, FLL+ Off,
MCLK off, ACLK On MCLK Off, ACLK Off
CPUOFF = 1
SCGO =1 CPUOFF = 1 DC Generator Off
Sca1=9 CPUOFF = 1 SCGO =1
LPM1 SCG0=0 SCG1 =1 LPM3
CPU Off, FLL+ Off, SCG1 =1 CPU Off, FLL+ Off,
41x/42x MCLK On, 43x/44x MCLK Off, ACLK On
MCLK off ACLK On LPM2
CPU Off, FLL+ Off,
MCLK Off, ACLK On DC Generator Off
SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status
0 0 Active CPU is active, all enabled clocks are active
0 1 LPMO CPU, MCLK are disabled (41x/42x peripheral MCLK
remains on)
SMCLK , ACLK are active
0 1 0 1 LPMH1 CPU, MCLK, DCO oscillator are disabled (41x/42x

peripheral MCLK remains on)

DC generator is disabled if the DCO is not used for
MCLK or SMCLK in active mode

SMCLK , ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO oscillator are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO oscillator are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

2-14 System Resets, Interrupts, and Operating Modes

Operating Modes

2.3.1 Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from any of the low-power
operating modes. The program flow is:

(1 Enter interrupt service routine:

B The PC and SR are stored on the stack
B The CPUOFF, SCG1, and OSCOFF bits are automatically reset

(1 Options for returning from the interrupt service routine:

B The original SR is popped from the stack, restoring the previous
operating mode.

B The SR bits stored on the stack can be modified within the interrupt
service routine returning to a different operating mode when the RETI
instruction is executed.

; Enter LPMO Example
BIS #GIE+CPUOFF, SR ; Enter LPMO
; c ; Program stops here

; Exit LPMO Interrupt Service Routine
BIC #CPUOFF, 0 (SP) ; Exit LPMO on RETI
RETI

; Enter LPM3 Example
BIS #GIE+CPUOFF+SCG1+SCG0,SR ; Enter LPM3
; C ; Program stops here

; Exit LPM3 Interrupt Service Routine
BIC #CPUOFF+SCG1+SCG0, 0 (SP) ; Exit LPM3 on RETI
RETI

Extended Time in Low-Power Modes

The negative temperature coefficient of the DCO should be considered when
the DCO is disabled for extended low-power mode periods. If the temperature
changes significantly, the DCO frequency at wake-up may be significantly
different from when the low-power mode was entered and may be out of the
specified operating range. To avoid this, the DCO can be set to it lowest value
before entering the low-power mode for extended periods of time where
temperature can change.

; Enter LPM4 Example with lowest DCO Setting
BIC.B #FN 8+FN 4+FN 3+FN 2,&SCFI0 ; Lowest Range
MOV.B #010h, &SCFI1 ; Select Tap 2
BIS #GIE+CPUOFF+0OSCOFF+SCG1+SCGO0, SR ; Enter LPM4

; c. ; Program stops

; Interrupt Service Routine
BIC #CPUOFF+0SCOFF+SCG1+SCG0, 0 (SP); Exit LPM4 on RETI
RETI

System Resets, Interrupts, and Operating Modes 2-15

Principles for Low-Power Applications

2.4 Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the
MSP430’s clock system to maximize the time in LPM3. LPM3 power
consumption is less than 2 pA typical with both a real-time clock function and
all interrupts active. A 32-kHz watch crystal is used for the ACLK, and the CPU
is clocked from the DCO (normally off) which has a 6-us wake-up time.

(1 Use interrupts to wake the processor and control program flow.
(1 Peripherals should be switched on only when needed.

1 Use low-power integrated peripheral modules in place of software driven
functions. For example Timer_A and Timer_B can automatically generate
PWM and capture external timing, with no CPU resources.

(O Calculated branching and fast table look-ups should be used in place of
flag polling and long software calculations.

(1 Avoid frequent subroutine and function calls due to overhead.

(O For longer software routines, single-cycle CPU registers should be used.

2.5 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 2-2.

Table 2-2.Connection of Unused Pins

Pin Potential Comment

AVcc DVce

AVgs DVss

VREF+ Open

Veger. DVss

Verer/Verer- DVss

XIN DVcc

XouT Open

XT2IN DVgs 43x, 44x. and 46x devices

XT20UT Open 43x, 44x, and 46x devices

Px.0 to Px.7 Open Switched to port function, output direction
RST/NMI DVgcorVee 47-kQ pullup with 10-nF (2.2 nFt) pulldown
RO3 DVss

COoMo Open

TDO/TDI/TMS/ Open

TCK

Ax (dedicated) Open 42x devices

Sxx Open

T MSP430F41x2only: The pulldown capacitor should not exceed 2.2 nF when using Spy-Bi-Wire
interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with Tl tools like FET interfaces or GANG
programmers.

2-16 System Resets, Interrupts, and Operating Modes

RISC 16-Bit CPU

This chapter describes the MSP430 CPU, addressing modes, and instruction
set.

Topic

Page
3.1 CPUIntroductionc.coiiiiiiiiiiii i iiiiiiiinnnnanens 3-2
3.2 CPURBRegISterscviiiiiiiiiiiinereeeaaannnnnnnernnnnns 34
3.3 AddressingModescciciiiiiiiieinreaiiriaeianaananns 3-9
34 InstructionSetc.coiiiiiiii i e 3-17

3-1

CPU Introduction

3.1 CPU Introduction

3-2

The CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The CPU can address the complete
address range without paging.

The CPU features include:

4
4

4
4

RISC architecture with 27 instructions and 7 addressing modes

Orthogonal architecture with every instruction usable with every
addressing mode

Full register access including program counter, status registers, and stack
pointer

Single-cycle register operations
Large 16-bit register file reduces fetches to memory

16-bit address bus allows direct access and branching throughout entire
memory range

16-bit data bus allows direct manipulation of word-wide arguments

Constant generator provides six most used immediate values and
reduces code size

Direct memory-to-memory transfers without intermediate register holding

Word and byte addressing and instruction formats

The block diagram of the CPU is shown in Figure 3-1.

RISC 16-Bit CPU

Figure 3-1. CPU Block Diagram

MDB - Memory Data Bus

16

I\

15

o

RO/PC Program Counter

o

R1/SP Stack Pointer 0

R2/SR/CG1 Status

R3/CG2 Constant Generator

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R8 General Purpose

R9 General Purpose

R10 General Purpose

R11 General Purpose

R12 General Purpose
| | | |
R13 General Purpose
| | | |
R14 General Purpose
| | | |
R15 General Purpose

QA

Zero, Z
Carry, C
Overflow, V
Negative, N

16-bit ALU

LO0SUT0CEIIE00 Y

CPU Introduction

Memory Address Bus — MAB

N\

16

RISC 16-Bit CPU

3-3

CPU Registers

3.2 CPU Registers

The CPU incorporates sixteen 16-bit registers. RO, R1, R2 and R3 have
dedicated functions. R4 to R15 are working registers for general use.

3.2.1 Program Counter (PC)

The 16-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, or six),
and the PC is incremented accordingly. Instruction accesses in the 64-KB
address space are performed on word boundaries, and the PC is aligned to
even addresses. Figure 3-2 shows the program counter.

Figure 3-2. Program Counter
15 10

Program Counter Bits 15 to 1 0

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV #LABEL, PC ; Branch to address LABEL
MOV LABEL,PC ; Branch to address contained in LABEL
MOV @R14,PC ; Branch indirect to address in R14

3-4 RISC 16-Bit CPU

3.2.2 Stack Pointer (SP)

CPU Registers

The stack pointer (SP/R1) is used by the CPU to store the return addresses
of subroutine calls and interrupts. It uses a predecrement, postincrement
scheme. In addition, the SP can be used by software with all instructions and
addressing modes. Figure 3-3 shows the SP. The SP is initialized into RAM
by the user, and is aligned to even addresses.

Figure 3-4 shows stack usage.

Figure 3-3. Stack Pointer

15 1 0
Stack Pointer Bits 15 to 1 0
MOV 2(SP),R6 ; Item I2 -> R6
MOV R7,0(SP) ; Overwrite TOS with R7
PUSH #0123h ; Put 0123h onto TOS
POP R8 ; R8 = 0123h
Figure 3-4. Stack Usage
Address PUSH #0123h POP R8
Oxxxh | | |
Oxxxh - 2 12 12 12
Oxxxh — 4 13 <— SP 13 13 <4— SP
Oxxxh — 6 0123h [«— SP| 0123h
Oxxxh - 8

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 3-5.

Figure 3-5. PUSH SP - POP SP Sequence

PUSH SP

SPoig —¥

SPy —» SPy

The stack pointer is changed after
a PUSH SP instruction.

POP SP

SP, —¥ SP4

The stack pointer is not changed after a POP SP

instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

RISC 16-Bit CPU 3-5

CPU Registers

3.2.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be
used in the register mode only addressed with word instructions. The
remaining combinations of addressing modes are used to support the
constant generator. Figure 3-6 shows the SR bits.

Figure 3-6. Status Register Bits

15 9 8 7 0
OSC|CPU
Reserved V | SCG1 | SCGO OFF|oFF GIE| N|Z]|C
rw-0

Table 3—1 describes the status register bits.

Table 3-1.Description of Status Register Bits

Bit

Description

Vv

SCG1

SCGOo

OSCOFF

CPUOFF

GIE

N

Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.

Set when:

Positive + Positive = Negative
Negative + Negative = Positive,
otherwise reset

ADD(.B) ,ADDC(.B)

Set when:

Positive — Negative = Negative
Negative — Positive = Positive,
otherwise reset

SUB(.B) ,SUBC(.B),CMP(.B)

System clock generator 1. This bit, when set, turns off the DCO dc
generator, if DCOCLK is not used for MCLK or SMCLK.

System clock generator 0. This bit, when set, turns off the FLL+ loop
control

Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator,
when LFXT1CLK is not use for MCLK or SMCLK

CPU off. This bit, when set, turns off the CPU.

General interrupt enable. This bit, when set, enables maskable
interrupts. When reset, all maskable interrupts are disabled.

Negative bit. This bit is set when the result of a byte or word operation
is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the
result

N is set to the value of bit 7 of the
result

Byte operation:

Zero bit. This bit is set when the result of a byte or word operation is 0
and cleared when the result is not 0.

Carry bit. This bit is set when the result of a byte or word operation
produced a carry and cleared when no carry occurred.

3-6 RISC 16-Bit CPU

CPU Registers

3.2.4 Constant Generator Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constants are selected with the source-register addressing modes
(As), as described in Table 3-2.

Table 3-2.Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 o0 -—---- Register mode

R2 01 (0) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 OFFFFh -1, word processing

The constant generator advantages are:

(1 No special instructions required

(1 No additional code word for the six constants

(1 No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and RS,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator — Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As = 00.
INC dst

is replaced by:

ADD 0(R3),dst

RISC 16-Bit CPU 3-7

CPU Registers

3.2.5 General-Purpose Registers R4 to R15

Twelve registers, R4 to R15, are general-purpose registers. All of these
registers can be used as data registers, address pointers, or index values, and
they can be accessed with byte or word instructions as shown in Figure 3-7.

Figure 3-7. Register-Byte/Byte-Register Operations

Register-Byte Operation

High Byte Low Byte

Unused Register

A 4

Byte Memory

Example Register-Byte Operation
R5 = 0A28Fh

R6 = 0203h

Mem(0203h) = 012h

ADD.B R5,0 (R6)
08Fh
+012h

O0A1h

Mem (0203h) = 0A1h
C=0,Z=0,N=1

(Low byte of register)
+ (Addressed byte)

—>(Addressed byte)

3-8 RISC 16-Bit CPU

Byte-Register Operation

High Byte Low Byte

Byte Memory

Oh Register

Example Byte-Register Operation
R5 = 01202h

R6 = 0223h

Mem(0223h) = 05Fh

ADD.B @R6,R5
05Fh
+002h

00061h

R5 =00061h
C=0,Z=0,N=0

(Addressed byte)
+ (Low byte of register)

—>(Low byte of register, zero to High byte)

3.3 Addressing Modes

Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand can address the complete address space with no
exceptions. The bit numbers in Table 3-3 describe the contents of the As

(source)

and Ad (destination) mode bits.

Table 3-3.Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/ Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

011 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

011 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/- Indirect register @Rn Rn is used as a pointer to the

mode operand.

11/- Indirect @Rn+ Rnis used as a pointer to the

autoincrement operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for .W instructions.

11/- Immediate mode #N The word following the instruction

contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note:

Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation, EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

RISC 16-Bit CPU 3-9

Addressing Modes

3.3.1 Register Mode

The register mode is described in Table 3—4.

Table 3-4.Register Mode Description

Assembler Code Content of ROM
MOV R10,R11 MOV R10,R11
Length: One or two words
Operation: Move the content of R10 to R11. R10 is not affected.
Comment: Valid for source and destination
Example: MOV R10,R11
Before: After:

R10 0A023h R10 0A023h
R11 O0FA15h R11 0A023h

PC PCold PC PCold +2

Note: Data in Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.

3-10 RISC 16-Bit CPU

3.3.2 Indexed Mode

The indexed mode is described in Table 3-5.

Table 3-5.Indexed Mode Description

Addressing Modes

Assembler Code

Content of ROM

MOV 2 (R5),6 (R6) MOV X (R5),Y(R6)
X=2
Y=6
Length: Two or three words
Operation: Move the contents of the source address (contents of R5 + 2)

to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
indexed mode, the program counter is incremented
automatically so that program execution continues with the

next instruction.

Comment: Valid for source and destination
Example: MOV 2(R5),6(R6);
Before: After:
Address Register Address
Space Space
Oxxxxh | PC
OFF16h | 00006h R5| 01080h OFF16h | 00006h R5
OFF14h | 00002h R6| 0108Ch OFF14h | 00002h R6
OFF12h | 04596h | PC OFF12h | 04596h
0108Ch
01094h Oxxxxh +0006h 01094h | Oxxxxh
01092h | 05555h 01092h 41092n [01234n
01090h | Oxxxxh 01090h | Oxxxxh
01080h
01084h | Oxxxxh +0002h 01084h [Oxxxxh
01082h | 01234h 01082h 01082h | 01234h
01080h | Oxxxxh 01080h | Oxxxxh

RISC 16-Bit CPU

Register

01080h
0108Ch

3-11

Addressing Modes

3.3.3 Symbolic Mode

The symbolic mode is described in Table 3-6.

Table 3-6.Symbolic Mode Description

Assembler Code Content of ROM
MOV EDE, TONI MOV X (PC),Y(PC)
X =EDE - PC
Y =TONI - PC
Length: Two or three words
Operation: Move the contents of the source address EDE (contents of

PC + X) to the destination address TONI (contents of PC +Y).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically. With symbolic mode, the program counter (PC)
is incremented automatically so that program execution
continues with the next instruction.

Comment: Valid for source and destination
Example: MOV EDE,TONI ;Source address EDE = 0F016h
;Dest. address TONI=01114h
Before: After:
Address Register Address Register
Space Space
Oxxxxh | PC
OFF16h | O11FEh OFF16h | O11FEh
OFF14h OF102h OFF14h OF102h
OFF12h | 04090h | PC OFF12h | 04090h
OFF14h
0F018h Oxxxxh +0F102h OF018h Oxxxxh
OF016h | 0A123h OFO16h 4Eg16h [0A123n
OF014h Oxxxxh OF014h Oxxxxh
OFF16h
01116h | Oxxxxh +011FEh 01116h | Oxxxxh
01114h 05555h ot1t14h 01114h 0A123h
01112h Oxxxxh 01112h Oxxxxh

3-12 RISC 16-Bit CPU

3.3.4 Absolute Mode

Addressing Modes

The absolute mode is described in Table 3-7.

Table 3-7.Absolute Mode Description

Assembler Code Content of ROM
MOV &EDE, &TONT MOV X (0),Y(0)
X =EDE
Y = TONI

Length:

Operation:

Comment:

Example:

Before:

OFF16h
O0FF14h
OFF12h

0F018h
0F016h
0F014h

01116h
01114h
01112h

Two or three words

Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the

next instruction.

Valid for source and destination

MOV &EDE, &TONI ;Source address EDE=0F016h,
;dest. address TONI=01114h
Address Register ter Address Register
Space Space
Oxxxxh | PC
01114h OFF16h | 01114h
0F016h OFF14h | OF016h
04292h | PC OFF12h | 04292h
Oxxxxh OF018h Oxxxxh
0A123h OF016h | 0A123h
Oxxxxh OF014h Oxxxxh
Oxxxxh 01116h Oxxxxh
01234h 01114h | 0A123h
Oxxxxh 01112h Oxxxxh

This address mode is mainly for hardware peripheral modules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).

RISC 16-Bit CPU 3-13

Addressing Modes

3.3.5

Table 3-8.Indirect Mode Description

3-14

Indirect Register Mode

The indirect register mode is described in Table 3-8.

Assembler Code

Content of ROM

MOV @R10,0(R11)

MOV @R10,0(R11)

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

0FA34h
0FA32h
OFA30h

002A8h
002A7h
002A6h

RISC 16-Bit CPU

Address
Space
Oxxxxh

One or two words

Move the contents of the source address (contents of R10) to
the destination address (contents of R11). The registers are
not modified.

Valid only for source operand. The substitute for destination
operand is O(Rd).

MOV.B @R10,0(R11)

0000h

R10

04AEBh

PC R11

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxh

012h

Oxxh

Register

O0FA33h

002A7h

After:

OFF16h
OFF14h
OFF12h

0FA34h
0FA32h
OFA30h

002A8h
002A7h
002A6h

Address
Space
Oxxxxh

0000h

04AEBh

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxh

05Bh

Oxxh

PC
R10
R11

Register

O0FA33h
002A7h

3.3.6 Indirect Autoincrement Mode

Addressing Modes

The indirect autoincrement mode is described in Table 3-9.

Table 3-9.Indirect Autoincrement Mode Description

Assembler Code

Content of ROM

MOV @R10+,0(R11)

MOV @R10+,0(R11)

Length:

Operation:

Comment:

Example:

Before:

OFF18h
OFF16h

O0FF14h
OFF12h

0FA34h
0FA32h
OFA30h

010AAh
010A8h
010A6h

One or two words

Move the contents of the source address (contents of R10) to

the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without

any overhead. This is useful for table processing.

Valid only for source operand. The substitute for destination

operand is O(Rd) plus second instruction INCD Rd.

Address
Space

Oxxxxh

00000h

04ABBh

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxxxh

01234h

Oxxxxh

R10
PC R11

MOV @R10+,0(R11)

After:
Register

OFF18h
O0FA32h | OFF16h

010A8h | OFF14h
OFF12h

0FA34h
0FA32h
OFA30h

010AAh
010A8h
010A6h

Address
Space

Oxxxxh

PC

00000h

R10

04ABBh

R11

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Register

0FA34h

010A8h

The autoincrementing of the register contents occurs after the operand is
fetched. This is shown in Figure 3-8.

Figure 3-8. Operand Fetch Operation

Instruction

Address

\ 4

Operand

+1/+2

RISC 16-Bit CPU

3-15

Addressing Modes

3.3.7

Table 3-10.Immediate Mode Description

3-16

Immediate Mode

The immediate mode is described in Table 3—-10.

Assembler Code

Content of ROM

MOV #45h, TONI

MOV @PC+,X (PC)

X=TONI - PC

45

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

010AAh
010A8h
010A6h

RISC 16-Bit CPU

Two or three words
It is one word less if a constant of CG1 or CG2 can be used.

Move the immediate constant 45h, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the
destination.

Valid only for a source operand.

MOV #45h, TONI

Address
Space

01192h

00045h

040B0Oh

Oxxxxh

01234h

Oxxxxh

Register

PC

OFF16h
+01192h

010A8h

After:

OFF18h
OFF16h

O0FF14h
OFF12h

010AAh
010A8h
010A6h

Address
Space
Oxxxxh

01192h

00045h

040B0Oh

Oxxxxh

00045h

Oxxxxh

Register

PC

Instruction Set

3.4 Instruction Set

The complete MSP430 instruction set consists of 27 core instructions and 24
emulated instructions. The core instructions are instructions that have unique
op-codes decoded by the CPU. The emulated instructions are instructions that
make code easier to write and read, but do not have op-codes themselves,
instead they are replaced automatically by the assembler with an equivalent
core instruction. There is no code or performance penalty for using emulated
instruction.

There are three core-instruction formats:
(1 Dual operand

O Single operand

O Jump

All single-operand and dual-operand instructions can be byte or word
instructions by using .B or .W extensions. Byte instructions are used to access
byte data or byte peripherals. Word instructions are used to access word data
or word peripherals. If no extension is used, the instruction is a word
instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg

dst The destination operand defined by Ad and D-reg

As The addressing bits responsible for the addressing mode used
for the source (src)

S-reg The working register used for the source (src)

Ad The addressing bits responsible for the addressing mode used
for the destination (dst)

D-reg The working register used for the destination (dst)

B/W Byte or word operation:

0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.

RISC 16-Bit CPU 3-17

Instruction Set

3.4.1 Double-Operand (Format I) Instructions

Figure 3-9 illustrates the double-operand instruction format.

Figure 3-9. Double-Operand Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code S-Reg Ad | BIW As D-Reg

Table 3-11 lists and describes the double operand instructions.

Table 3-11.Double-Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V N z ¢
MOV (.B) src,dst src — dst - - - -
ADD(.B) src,dst src + dst — dst * * * *
ADDC(.B) src,dst src+dst+C — dst * * * *
SUB(.B) src,dst dst+ .not.src + 1 — dst * * * *
SUBC(.B) src,dst dst+.not.src+ C — dst * * * *
CMP (.B) src,dst dst-src * * * *
DADD(.B) src,dst src+dst+ C — dst(decimally) * * * *
BIT(.B) src,dst src.and. dst 0 * * *
BIC(.B) src,dst .not.src .and. dst — dst - - - -
BIS(.B) src,dst src.or. dst — dst - - - -
XOR (.B) src,dst src .xor. dst — dst * * * *
AND (.B) src,dst src.and. dst — dst 0 * * *

*

The status bit is affected

— The status bit is not affected
0 The status bit is cleared

1 The status bit is set

Note: Instructions cMP and SUB

The instructions cMP and SUB are identical except for the storage of the
result. The same is true for the BIT and AND instructions.

3-18 RISC 16-Bit CPU

3.4.2 Single-Operand (Format ll) Instructions

Instruction Set

Figure 3-10 illustrates the single-operand instruction format.

Figure 3—-10. Single-Operand Instruction Format

15 14 13 12 11

10 9 8 7 6

Op-code

B/W

Ad D/S-Reg

Table 3-12 lists and describes the single operand instructions.

Table 3—-12.Single-Operand Instructions

Operation

Status Bits
\" N Y4 C

Mnemonic S-Reg,
D-Reg

RRC (.B) dst

RRA (.B) dst

PUSH (.B) src

SWPB dst
CALL dst
RETI

SXT dst

C->MSB-.....LSB- C
MSB — MSB -...LSB - C
SP -2 SP, src - @SP
Swap bytes

SP -2 SP,PC+2 - @SP
dst - PC

TOS - SR, SP +2 - SP
TOS - PC,SP +2 - SP

Bit 7 - Bit 8........ Bit 15

The status bit is affected

- The status bit is not affected

0 The status bit is cleared

The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE), or
the indexed mode x(RN) is used, the word that follows contains the address

information.

RISC 16-Bit CPU 3-19

Instruction Set

3.4.3 Jumps

Figure 3—-11 shows the conditional-jump instruction format.

Figure 3—-11. Jump Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op-code C 10-Bit PC Offset

Table 3-13 lists and describes the jump instructions.

Table 3-13.Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set
JNE/JNZ Label Jump to label if zero bit is reset
Jc Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N .XOR. V) =0
JL Label Jump to label if (N .XOR. V) = 1
JMP Label Jump to label unconditionally

Conditional jumps support program branching relative to the PC and do not
affect the status bits. The possible jump range is from -511 to +512 words
relative to the PC value at the jump instruction. The 10-bit program-counter
offset is treated as a signed 10-bit value that is doubled and added to the
program counter:

PCneW = PCo|d + 2 + PCoﬁset X 2

3-20 RISC 16-Bit CPU

* ADC[.W]
*ADC.B
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry to destination
Add carry to destination

ADC dst or ADC.W dst
ADC.B dst

dst + C —> dst

ADDC #0,dst
ADDC.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Set if dst was incremented from OFFFFh to 0000, reset otherwise
Set if dst was incremented from OFFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to

by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.

ADD.B @R13,0(R12) ; Add LSDs

ADC.B 1(R12) ; Add carry to MSD

RISC 16-Bit CPU 3-21

Instruction Set

ADDI[.W]
ADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Add source to destination
Add source to destination

ADD src,dst or ADD.W src,dst
ADD.B src,dst

src + dst —> dst

The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Setif there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.
R5 is increased by 10. The jump to TONI is performed on a carry.

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) > 246 [0Ah+0F6h]
...... ; No carry

3-22 RISC 16-Bit CPU

ADDC[.W]
ADDC.B
Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add source and carry to destination
Add source and carry to destination

ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

src + dst + C —> dst

The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
; resulting from the LSDs

The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven words
above the pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry

; resulting from the LSDs

RISC 16-Bit CPU 3-23

Instruction Set

ANDI[.W]
AND.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Source AND destination
Source AND destination

AND src,dst or AND.W src,dst
AND.B src,dst

src .AND. dst —> dst

The source operand and the destination operand are logically ANDed. The
result is placed into the destination.

N: Set if result MSB is set, reset if not set

Z: Setif result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R5 are used as a mask (#0AA55h) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.

MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
JZ TONI ;

...... ; Result is not zero

; or
AND #0AA55h, TOM
Jz TONI

The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.

AND.B #0A5h, TOM ; mask Lowbyte TOM with 0A5h
Jz TONI ;
...... ; Result is not zero

3-24 RISC 16-Bit CPU

BIC[.W]
BIC.B

Syntax
Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Clear bits in destination
Clear bits in destination

BIC src,dst or BIC.W src,dst
BIC.B src,dst

.NOT.src .AND. dst —> dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status bits are not affected.

OSCOFF, CPUOFF, and GIE are not affected.

The six MSBs of the RAM word LEO are cleared.

BIC #0FCOOh,LEO ; Clear 6 MSBs in MEM(LEO)
The five MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO : Clear 5 MSBs in Ram location LEO

RISC 16-Bit CPU 3-25

Instruction Set

BIS[.W]
BIS.B

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Set bits in destination
Set bits in destination

BIS src,dst or BIS.W src,dst
BIS.B src,dst

src .OR. dst —> dst

The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

Status bits are not affected.

OSCOFF, CPUOFF, and GIE are not affected.

The six LSBs of the RAM word TOM are set.

BIS #003Fh, TOM; set the six LSBs in RAM location TOM
The three MSBs of RAM byte TOM are set.

BIS.B #0EOh, TOM : set the three MSBs in RAM location TOM

3-26 RISC 16-Bit CPU

BIT[.W]
BIT.B

Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Test bits in destination
Test bits in destination

BIT src,dst or BIT.W src,dst
src .AND. dst

The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

N: Set if MSB of result is set, reset otherwise

Z: Setif result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (.NOT. zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.
If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set?

JNZ TOM : Yes, branch to TOM
; No, proceed

If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8

JC TOM

A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.

Serial communication with LSB is shifted first:
JXXXX XXXX XXXX XXXX

BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry —> MSB of RECBUF
; CXXX XXXX
...... ; repeat previous two instructions
...... ; 8 times
; CCCC cCCC
; N N
; MSB LSB
; Serial communication with MSB shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry —> LSB of RECBUF
; XXXX XXXC
...... ; repeat previous two instructions
...... ; 8 times
; cccc ccce
i LSB
; MSB

RISC 16-Bit CPU 3-27

Instruction Set

* BR, BRANCH
Syntax
Operation
Emulation

Description

Status Bits

Example

Branch to

BR

dst —> PC
MOV

.......... destination

dst,PC

An unconditional branch is taken to an address anywhere in the 64K address
space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status bits are not affected.

Examples for all addressing modes are given.

BR

BR

BR

BR

BR

BR

BR

3-28 RISC 16-Bit CPU

#EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

&EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

R5 ; Branch to the address contained in R5
: Core instruction MOV R5,PC
; Indirect R5
@R5 ; Branch to the address contained in the word

; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

@R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

CALL
Syntax

Operation

Description

Status Bits

Example

Subroutine
CALL

dst
SP-2
PC
tmp

Instruction Set

dst

—>tmp dst is evaluated and stored
-> SP

-> @SP PC updated to TOS

->PC dst saved to PC

A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word

instruction.

Status bits

are not affected.

Examples for all addressing modes are given.

CALL

CALL

CALL

CALL

CALL

CALL

CALL

#EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)
: SP-2 - SP, PC+2 - @SP, @PC+ — PC

EXEC ; Call on the address contained in EXEC
; SP-2 —» SP, PC+2 — @SP, X(PC) — PC
; Indirect address

&EXEC ; Call on the address contained in absolute address
: EXEC
; SP-2 —» SP, PC+2 — @SP, X(0) —» PC
; Indirect address

R5 ; Call on the address contained in R5
: SP-2 - SP, PC+2 - @SP, R5 - PC
; Indirect R5
@R5 ; Call on the address contained in the word

; pointed to by R5
: SP-2 - SP, PC+2 - @SP, @R5 — PC
; Indirect, indirect R5

@R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time—S/W flow uses R5 pointer—
; it can alter the program execution due to
; access to next address in a table pointed to by R5
: SP-2 - SP, PC+2 - @SP, @R5 — PC
; Indirect, indirect R5 with autoincrement

X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP-2 —» SP, PC+2 — @SP, X(R5) — PC
; Indirect, indirect R5 + X

RISC 16-Bit CPU 3-29

Instruction Set

* CLR[.W]
*CLR.B

Syntax

Operation

Emulation

Description

Status Bits

Example

Example

Example

Clear destination
Clear destination

CLR dst or CLR.W dst
CLR.B dst

0 —> dst

MOV #0,dst

MOV.B #0,dst

The destination operand is cleared.
Status bits are not affected.

RAM word TONI is cleared.

CLR TONI ; 0 —> TONI
Register R5 is cleared.

CLR R5

RAM byte TONI is cleared.

CLR.B TONI ; 0 —> TONI

3-30 RISC 16-Bit CPU

* CLRC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Clear carry bit

CLRC

0—->C

BIC #1,SR

The carry bit (C) is cleared. The clear carry instruction is a word instruction.

N: Not affected
Z: Not affected
C: Cleared

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C = 0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

RISC 16-Bit CPU 3-31

Instruction Set

* CLRN
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

SUBR

SUBRET

Clear negative bit
CLRN

0—>N
or
(.NOT.src .AND. dst —> dst)

BIC #4,SR

The constant 04h is inverted (OFFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

N: Resetto 0

Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN

CALL SUBR

JN SUBRET ; If input is negative: do nothing and return
RET

3-32 RISC 16-Bit CPU

* CLRZ
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Clear zero bit
CLRZ

027
or
(.NOT.src .AND. dst —> dst)

BIC #2,SR

The constant 02h is inverted (OFFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

N: Not affected
Z: Resetto 0
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.
The zero bit in the status register is cleared.

CLRZ

RISC 16-Bit CPU 3-33

Instruction Set

CMP[.W]
CMP.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Compare source and destination
Compare source and destination

CMP src,dst or CMP.W src,dst
CMP.B src,dst

dst + .NOT.src + 1
or
(dst — src)

The source operand is subtracted from the destination operand. This is
accomplished by adding the 1s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

N: Set if result is negative, reset if positive (src >= dst)

Z: Setif result is zero, reset otherwise (src = dst)

C: Setif there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

R5 and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP R5,R6 ; R5 = R6?
JEQ EQUAL ; YES, JUMP

Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

MOV #NUM,R5 ; humber of words to be compared
MOV #BLOCK1,R6 ; BLOCK1 start address in R6
MOV #BLOCK2,R7 ; BLOCK2 start address in R7

L$1 CMP @R6+,0(R7) ; Are Words equal? R6 increments
JNZ ERROR ; No, branch to ERROR
INCD R7 ; Increment R7 pointer
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI . MEM(EDE) = MEM(TONI)?
JEQ EQUAL . YES, JUMP

3-34 RISC 16-Bit CPU

* DADC[.W]
* DADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry decimally to destination
Add carry decimally to destination

DADC dst or DADC.W src,dst
DADC.B dst

dst + C —> dst (decimally)

DADD #0,dst
DADD.B #0,dst

The carry bit (C) is added decimally to the destination.

N: Setif MSB is 1

Z: Setif dstis 0, reset otherwise

C: Set if destination increments from 9999 to 0000, reset otherwise
Set if destination increments from 99 to 00, reset otherwise

V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit
decimal number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

RISC 16-Bit CPU 3-35

Instruction Set

DADD[.W]
DADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Source and carry added decimally to destination
Source and carry added decimally to destination

DADD src,dst or DADD.W src,dst
DADD.B src,dst

src + dst + C —> dst (decimally)

The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

N: Setif the MSB is 1, reset otherwise
Z: Setif result is zero, reset otherwise
C: Setif the result is greater than 9999

Set if the result is greater than 99
V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; clear carry

DADD R5,R3 ; add LSDs

DADD R6,R4 ; add MSDs with carry

JC OVERFLOW ; If carry occurs go to error handling routine

The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC ; clear carry

DADD.B #1,CNT ; increment decimal counter
or

SETC

DADD.B #0,CNT : = DADC.B CNT

3-36 RISC 16-Bit CPU

* DEC[.W]
* DEC.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Decrement destination
Decrement destination

DEC dst or DEC.W dst
DEC.B dst
dst — 1 —> dst

SUB #1,dst
SUB.B #1,dst

The destination operand is decremented by one. The original contents are
lost.

Set if result is negative, reset if positive

Set if dst contained 1, reset otherwise

Reset if dst contained 0, set otherwise

Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
; TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE

; to EDE+OFEh

L$1

MOV #EDE,R6

MOV #255R10

MOV.B @R6+,TONI-EDE-1(R6)
DEC R10

INZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 3-12.

Figure 3—12. Decrement Overlap

EDE
+—>
TONI
EDE+254
TONI+254

RISC 16-Bit CPU 3-37

Instruction Set

* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination
Syntax DECD dst or DECD.W dst
DECD.B dst
Operation dst — 2 —> dst
Emulation SuB #2,dst
Emulation SUB.B #2,dst
Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 2.
DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI

; Tables should not overlap: start of destination address TONI must not be within the

; range EDE to EDE+0FEh

MOV #EDE,R6
MOV #510,R10
L$1 MOV @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1
Example Memory at location LEO is decremented by two.
DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

3-38 RISC 16-Bit CPU

* DINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Instruction Set

Disable (general) interrupts
DINT

0 - GIE
or
(OFFF7h .AND. SR - SR / .NOT.src .AND. dst —> dst)

BIC #8,SR

All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status bits are not affected.
GIE is reset. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP

MOV COUNTHI,R5 ; Copy counter

MOV COUNTLO,R6

EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

RISC 16-Bit CPU 3-39

Instruction Set

* EINT Enable (general) interrupts
Syntax EINT
Operation 1 - GIE

or

(0008h .OR. SR —> SR / .src .OR. dst —> dst)
Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.
PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack
; other interrupts are allowed

BIT #Mask, @ SP
JEQ MaskOK ; Flags are present identically to mask: jump
MaskOK BIC #Mask, @ SP
INCD SP ; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.
RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

3-40 RISC 16-Bit CPU

* INCL.W]
*INC.B

Syntax

Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Increment destination
Increment destination

INC dst or INC.W dst
INC.B dst
dst + 1 —> dst

ADD #1,dst
The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

RISC 16-Bit CPU 3-41

Instruction Set

* INCD[.W]
*INCD.B

Syntax

Operation

Emulation
Emulation

Example

Status Bits

Mode Bits

Example

Example

Double-increment destination
Double-increment destination

INCD dst or INCD.W dst
INCD.B dst
dst + 2 —> dst

ADD #2,dst
ADD.B #2,dst

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Set if dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The item on the top of the stack (TOS) is removed without using a register.

PUSH R5 ; R5 is the result of a calculation, which is stored
; in the system stack

INCD SP ; Remove TOS by double-increment from stack
; Do not use INCD.B, SP is a word-aligned
; register

RET

The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

3-42 RISC 16-Bit CPU

* INV[.W]
*INV.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Invert destination
Invert destination

INV dst
INV.B dst

.NOT.dst —> dst

XOR #OFFFFh,dst
XOR.B #OFFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

Content of R5 is negated (twos complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = OFF51h
INC R5 ; R5 is now negated, R5 = OFF52h

Content of memory byte LEO is negated.

MOV.B #0AEN,LEO ; MEM(LEO) = 0AEh
INV.B LEO : Invert LEO, MEM(LEO) = 051h
INC.B LEO . MEM(LEO) is negated, MEM(LEO) = 052h

RISC 16-Bit CPU 3-43

Instruction Set
JC

JHS

Syntax

Operation

Description

Status Bits

Example

Example

Jump if carry set
Jump if higher or same

JC label
JHS label

If C=1: PC + 2 x offset —> PC
If C = 0: execute following instruction

The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.
The P1IN.1 signal is used to define or control the program flow.

BIT #01h,&P1IN ; State of signal —> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 > 15
...... ; Continue here if R5 < 15

3-44 RISC 16-Bit CPU

JEQ, JZ
Syntax

Operation

Description

Status Bits

Example

Example

Example

Instruction Set
Jump if equal, jump if zero
JEQ label, JZ label

If Z=1: PC + 2 x offset —> PC
If Z = 0: execute following instruction

The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 contains zero.

TST R7 ; Test R7
Jz TONI ; if zero: JUMP

Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM (table address + content of R5)

JEQ LEO ; Jump if both data are equal

...... ; No, data are not equal, continue here

Branch to LABEL if R5 is 0.

TST R5
Jz LABEL

RISC 16-Bit CPU 3-45

Instruction Set

JGE
Syntax

Operation

Description

Status Bits

Example

Jump if greater or equal
JGE label

If (N .XOR. V) = 0 then jump to label: PC + 2 x offset —> PC
If (N .XOR. V) = 1 then execute the following instruction

The status register negative bit (N) and overflow bit (V) are tested. If both N
and V are set or reset, the 10-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP @R7,R6 ; R6 > (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 > (R7)
...... ; No, proceed

3-46 RISC 16-Bit CPU

JL
Syntax

Operation

Description

Status Bits

Example

Instruction Set

Jump if less
JL label

If (N .XOR. V) = 1 then jump to label: PC + 2 x offset —> PC
If (N .XOR. V) = 0 then execute following instruction

The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed

RISC 16-Bit CPU 3-47

Instruction Set

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 x offset —> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the

program counter.
Status Bits Status bits are not affected.

Hint: This one-word instruction replaces the BRANCH instruction in the range of
—-511 to +512 words relative to the current program counter.

3-48 RISC 16-Bit CPU

JN
Syntax

Operation

Description

Status Bits

Example

L$1

Instruction Set
Jump if negative
JN label

if N=1: PC + 2 x offset —> PC
if N = 0: execute following instruction

The negative bit (N) of the status register is tested. If it is set, the 10-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status bits are not affected.

The result of a computation in R5 is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB R5,COUNT ; COUNT - R5 —> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT>0

RISC 16-Bit CPU 3-49

Instruction Set

JNC
JLO

Syntax

Operation

Description

Status Bits

Example

ERROR

CONT

Example

Jump if carry not set
Jump if lower

JNC label
JLO label

if C =0: PC + 2 x offset —> PC
if C = 1: execute following instruction

The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the next instruction following the jump is executed. JNC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.

The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 —> BUFFER
JNC CONT ; No carry, jump to CONT
...... ; Error handler start

...... ; Continue with normal program flow

Branch to STL2 if byte STATUS contains 1 or 0.

CMP.B #2,STATUS
JLO STL2 : STATUS < 2
...... ; STATUS > 2, continue here

3-50 RISC 16-Bit CPU

JNE

JNZ

Syntax

Operation

Description

Status Bits

Example

Instruction Set

Jump if not equal
Jump if not zero

JNE label
JNZ label

If Z=0: PC + 2 x offset —> PC
If Z = 1: execute following instruction

The status register zero bit (2Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 and R8 have different contents.

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

RISC 16-Bit CPU 3-51

Instruction Set
MOVI[.W]
MOV.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Loop

Example

Loop

Move source to destination
Move source to destination

MOV src,dst or MOV.W src,dst
MOV.B src,dst

src —> dst

The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.

The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter
MOV @R10+,TOM-EDE-2(R10) ; Use pointer in R10 for both tables

DEC R9 ; Decrement counter
JNZ Loop ; Counter # 0, continue copying
...... ; Copying completed

The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter
MOV.B @R10+,TOM-EDE-1(R10) ; Use pointer in R10 for

; both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter # 0, continue
; copying
...... ; Copying completed

3-52 RISC 16-Bit CPU

* NOP
Syntax
Operation
Emulation

Description

Status Bits

Instruction Set

No operation
NOP

None

MOV #0, R3

No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status bits are not affected.

The NOP instruction is mainly used for two purposes:

1 Tofill one, two, or three memory words
(1 To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

Examples:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the value
in R4 is 120h, then a security violation will occur with the watchdog timer
(address 120h) because the security key was not used.

RISC 16-Bit CPU 3-53

Instruction Set

* POP[.W]
* POP.B
Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

Pop word from stack to destination
Pop byte from stack to destination

POP dst

POP.B dst

@SP ->temp

SP+2 —>SP

temp —> dst

MOV @SP+,dst or MOV.W @ SP+,dst
MOV.B @SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.
The contents of R7 and the status register are restored from the stack.

POP R7
POP SR

; Restore R7
; Restore status register

The contents of RAM byte LEO is restored from the stack.
POP.B LEO ; The low byte of the stack is moved to LEO.
The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,

; the high byte of R7 is 00h

The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 =203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack
POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

3-54 RISC 16-Bit CPU

PUSH[.W]
PUSH.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Push word onto stack
Push byte onto stack

PUSH src or PUSH.W src
PUSH.B src

SP-2 -5 SP
src - @SP

The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
The contents of the status register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

RISC 16-Bit CPU 3-55

Instruction Set

* RET Return from subroutine
Syntax RET
Operation @SP— PC
SP+2 - SP
Emulation MOV @SP+,PC
Description The return address pushed onto the stack by a CALL instruction is moved to

the program counter. The program continues at the code address following the
subroutine call.

Status Bits Status bits are not affected.

3-56 RISC 16-Bit CPU

Instruction Set

RETI Return from interrupt
Syntax RETI
Operation TOS — SR
SP +2 — SP
TOS — PC
SP +2 — SP
Description The status register is restored to the value at the beginning of the interrupt

service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

Status Bits N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from system stack.

Example Figure 3-13 illustrates the main program interrupt.

Figure 3-13. Main Program Interrupt

PC -6 YY)
PC -4
Interrupt Request
PC -2 /
PC v Interrupt Accepted
PC +2 PC+2 is Stored PC = PCi YY)
Onto Stack
PC +4 PCi +2
PC +6 PCi +4
PC +8 °
v H
PCi +n-4
PCi +n-2
PCi +n RETI
- v

RISC 16-Bit CPU 3-57

Instruction Set

* RLA[.W] Rotate left arithmetically

*RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <- MSB <- MSB-1 LSB+1 <-LSB<-0

Emulation ADD dst,dst

ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 3-14.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst > 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 3—14. Destination Operand—Arithmetic Shift Left

Word 15 0
___________________ PR
Byte 7 0

An overflow occurs if dst > 040h and dst < 0COh before the operation is
performed: the result has changed sign.

Status Bits Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C0O00h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (x 2)
Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

Note: RLA Substitution
The assembler does not recognize the instruction:

RLA @R5+, RLA.B @R5+, or RLA(.B) @R5
It must be substituted by:

ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) or ADD(.B) @R5

3-58 RISC 16-Bit CPU

* RLC[.W]
* RLC.B

Syntax

Operation
Emulation

Description

Instruction Set

Rotate left through carry
Rotate left through carry

RLC dst or RLC.W dst
RLC.B dst

C <—- MSB <- MSB-1 LSB+1<-LSB<-C
ADDC dst,dst

The destination operand is shifted left one position as shown in Figure 3-15.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 3-15. Destination Operand—Carry Left Shift

Status Bits

Mode Bits

Example

Example

Example

Word 15 0
———————————————————
Byte 7 0

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 04000h < dst < 0C0O00h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

R5 is shifted left one position.

RLC R5 ;(R5x2)+C ->R5

The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information —> Carry
RLC R5 ; Carry=P0in.1 —> LSB of R5

The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C —> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC.B @R5+, or RLC(.B) @R5
It must be substituted by:

ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) or ADDC(.B) @R5

RISC 16-Bit CPU 3-59

Instruction Set

RRA[.W] Rotate right arithmetically
RRA.B Rotate right arithmetically
Syntax RRA dst or RRA.W dst
RRA.B dst
Operation MSB -> MSB, MSB -> MSB-1, ... LSB+1 —->LSB, LSB->C
Description The destination operand is shifted right one position as shown in Figure 3-16.

The MSB is shifted into the MSB, the MSB is shifted into the MSB-1, and the
LSB+1 is shifted into the LSB.

Figure 3—-16. Destination Operand—Arithmetic Right Shift

Word 15 0
__________________ >
Byte |
15 0
Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.
RRA R5 ; R5/2 —> R5
; The value in R5 is multiplied by 0.75 (0.5 + 0.25).
PUSH R5 ; Hold R5 temporarily using stack
RRA R5 ;R5x0.5 —> R5
ADD @SP+R5 ;R5x05+R5=15%xR5 ->R5
RRA R5 ; (1.5xR5)x0.5=0.75xR5 —>R5
Example The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.
RRA.B R5 ; R5/2 —> R5: operation is on low byte only
; High byte of R5 is reset
PUSH.B R5 ;R5x 0.5 —> TOS
RRA.B @SP ; TOSx0.5=05%xR5x0.5=0.25%xR5 —>TOS
ADD.B @SP+R5 ;R5x0.5+R5x0.25=0.75xR5 —>R5

3-60 RISC 16-Bit CPU

RRCL.W]
RRC.B

Syntax

Operation

Description

Instruction Set

Rotate right through carry
Rotate right through carry

RRC dst or RRC.W dst
RRC dst

C —> MSB —> MSB-1 LSB+1 —>LSB ->C

The destination operand is shifted right one position as shown in Figure 3-17.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 3—-17. Destination Operand—Carry Right Shift

Status Bits

Mode Bits

Example

Example

Word 15 0
———————————————————
Byte 7 0

N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.
R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h —> R5

R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h —> R5; low byte of R5 is used

RISC 16-Bit CPU 3-61

Instruction Set

* SBC[.W]
*SBC.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SBC dst or SBC.W dst
SBC.B dst

dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBC #0,dst
SUBC.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

3-62 RISC 16-Bit CPU

*SETC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

DSUB

Instruction Set

Set carry bit
SETC

1->C

BIS #1,SR

The carry bit (C) is set.

N: Not affected
Z: Not affected
C: Set

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

ADD #06666h,R5 ; Move content R5 from 0-9 to 6-0Fh
; R5 = 03987h + 06666h = 09FEDNh
INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h
SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
;R6=R6+R5+1
; R6 = 0150h

RISC 16-Bit CPU 3-63

Instruction Set

* SETN Set negative bit

Syntax SETN

Operation 1-—>N

Emulation BIS #4,SR
Description The negative bit (N) is set.
Status Bits N: Set

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

3-64 RISC 16-Bit CPU

Instruction Set

* SETZ Set zero bit
Syntax SETZ
Operation 1->2Z
Emulation BIS #2,SR
Description The zero bit (Z) is set.
Status Bits N: Not affected

Z: Set

C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

RISC 16-Bit CPU 3-65

Instruction Set

SUBL.W] Subtract source from destination

SUB.B Subtract source from destination

Syntax SuB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 —> dst
or

[(dst — src —> dst)]

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Setif result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example See example at the SBC instruction.
Example See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

3-66 RISC 16-Bit CPU

SUBCI[.W]SBBI[.W]
SUBC.B,SBB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

dst + .NOT.src + C —> dst
or
(dst —src — 1 + C —> dst)

The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive.

Z: Setif result is zero, reset otherwise.

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Two floating point mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUB.W R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter in R10
and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
; resulting from the LSDs

Note: Borrow Implementation

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

RISC 16-Bit CPU 3-67

Instruction Set

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15t0 8 <—> bits 7t0 0

Description The destination operand high and low bytes are exchanged as shown in
Figure 3-18.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3-18. Destination Operand Byte Swap

15 8 7 0

Example

MOV #040BFh,R7 ; 0100000010111111 —> R7

SWPB R7 ; 1011111101000000 in R7
Example The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB R5 ;

MOV R5,R4 ;Copy the swapped value to R4

BIC #0FFOOh,R5 ;Correct the result

BIC #00FFh,R4 ;Correct the result

3-68 RISC 16-Bit CPU

SXT

Syntax
Operation
Description

Status Bits

Mode Bits

Instruction Set

Extend Sign

SXT dst

Bit 7 —> Bit 8 Bit 15

The sign of the low byte is extended into the high byte as shown in Figure 3—19.

N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

Figure 3—-19. Destination Operand Sign Extension

Example

15 8 7 0

R7 is loaded with the P1IN value. The operation of the sign-extend instruction
expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to R6.

MOV.B &P1IN,R7 ; P1IN = 080h:1000 0000
SXT R7 ; R7 = OFF80h: 1111 1111 1000 0000

RISC 16-Bit CPU 3-69

Instruction Set

* TST[.W]
*TST.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Test destination
Test destination

TST dst or TST.W dst
TST.B dst

dst + OFFFFh + 1
dst + OFFh + 1

CMP #0,dst
CMP.B #0,dst

The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C: Set

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

R7 is tested. If it is negative, continue at R7NEG,; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7

JN R7NEG ; R7 is negative

JZ R7ZERO ; R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ... ; R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7

JN R7NEG ; Low byte of R7 is negative

Jz R7ZERO ; Low byte of R7 is zero
R7POS ... ; Low byte of R7 is positive but not zero
R7NEG ... ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

3-70 RISC 16-Bit CPU

XOR[.W]
XOR.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Exclusive OR of source with destination
Exclusive OR of source with destination

XOR src,dst or XOR.W src,dst
XOR.B src,dst

src .XOR. dst —> dst

The source and destination operands are exclusive ORed. The result is placed
into the destination. The source operand is not affected.

N: Set if result MSB is set, reset if not set

Z: Setif result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6
The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in
; low byte of R6

Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B EDE,R7 ; Set different bit to “1s”
INV.B R7 ; Invert Lowbyte, Highbyte is Oh

RISC 16-Bit CPU 3-71

Instruction Set

3.4.4 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to the MCLK.

Interrupt and Reset Cycles

Table 3-14 lists the CPU cycles for interrupt overhead and reset.

Table 3—14.Interrupt and Reset Cycles

No. of Length of

Action Cycles Instruction
Return from interrupt (RETI) 5 1
Interrupt accepted 6 -
WDT reset 4 _
Reset (RST/NMI) 4 -

Format-ll (Single Operand) Instruction Cycles and Lengths

Table 3-15 lists the length and CPU cycles for all addressing modes of
format-1l instructions.

Table 3—-15.Format-Il Instruction Cycles and Lengths

No. of Cycles

Addressing RRA, RRC Length of

Mode SWPB, SXT PUSH CALL |[nstruction Example
Rn 1 3 4 1 SWPB R5
@Rn 3 4 4 1 RRC @R9
@Rn+ 3 5 5 1 SWPB @R10+
#N (See note) 4 5 2 CALL #0FO00h
X(Rn) 4 5 5 2 CALL 2 (R7)
EDE 4 5 5 2 PUSH EDE
&EDE 4 5 5 2 SXT &EDE

Note: Instruction Format Il Inmediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode results in
an unpredictable program operation.

Format-lll (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

3-72 RISC 16-Bit CPU

Format-l (Double Operand) Instruction Cycles and Lengths

Instruction Set

Table 3-16 lists the length and CPU cycles for all addressing modes of format-

instructions.

Table 3—16.Format | Instruction Cycles and Lengths

Addressing Mode No. of Length of
Src Dst Cycles Instruction Example
Rn Rm 1 1 MOV R5,RS8
PC 2 1 BR R9
x(Rm) 4 2 ADD R5, 4 (R6)
EDE 4 2 XOR R8,EDE
&EDE 4 2 MOV R5, &EDE
@Rn Rm 2 1 AND @R4,R5
PC 2 1 BR @R8
x(Rm) 5 2 XOR @R5, 8 (R6)
EDE 5 2 MOV @R5,EDE
&EDE 5 2 XOR @R5, &EDE
@Rn+ Rm 2 1 ADD @R5+,R6
PC 3 1 BR @RI+
x(Rm) 5 2 XOR @R5, 8 (R6)
EDE 5 2 MOV @R9+,EDE
&EDE 5 2 MOV @R9+, &EDE
#N Rm 2 2 MOV #20,R9
PC 3 2 BR #2AEh
x(Rm) 5 3 MOV #0300h, 0 (SP)
EDE 5 3 ADD #33,EDE
&EDE 5 3 ADD #33, &EDE
x(Rn) Rm 3 2 MOV 2 (R5) ,R7
PC 3 2 BR 2 (R6)
TONI 6 3 MOV 4(R7),TONI
x(Rm) 6 3 ADD 4(R4),6(R9)
&TONI 6 3 MOV 2 (R4) , &TONI
EDE Rm 3 2 AND EDE,R6
PC 3 2 BR EDE
TONI 6 3 CMP EDE, TONI
x(Rm) 6 3 MOV EDE, 0 (SP)
&TONI 6 3 MOV EDE, &TONI
&EDE Rm 3 2 MOV &EDE,RS8
PC 3 2 BRA &EDE
TONI 6 3 MOV &EDE, TONI
x(Rm) 6 3 MOV &EDE, 0 (SP)
&TONI 6 3 MOV &EDE, &TONI

RISC 16-Bit CPU 3-73

Instruction Set

3.4.5 Instruction Set Description

The instruction map is shown in Figure 3-20 and the complete instruction set
is summarized in Table 3-17.

Figure 3-20. Core Instruction Map

000 040 080 OCO 100 140 180 1CO 200 240 280 2CO 300 340 380 3CO

Oxxx

4xXXX

8xxx

Cxxx

1xxx | RRC |RRC.B | swPrB RRA | RRAB| SXT PUSH |PUSH.B| CALL RETI
14xx

18xx

1Cxx

20xx JNE/JNZ

24xx JEQ/JZ

28xx JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

4xXxX MOV, MOV.B
5xXxX ADD, ADD.B
BXXX ADDC, ADDC.B
7XXX SUBC, SUBC.B
8xxx SUB, SUB.B
9XXX CMP, CMP.B
AXxx DADD, DADD.B
Bxxx BIT, BIT.B

Cxxx BIC, BIC.B
Dxxx BIS, BIS.B
Exxx XOR, XOR.B
Fxxx AND, AND.B

3-74 RISC 16-Bit CPU

Table 3—-17.MSP430 Instruction Set

Instruction Set

Mnemonic Description Vv N z C
apc(.B)t dst Add C to destination dst + C — dst * * * *
ADD (.B) src,dst Add source to destination src + dst — dst * * * *
ADDC (.B) src,dst Add source and C to destination src + dst + C — dst * * * *
AND (.B) src,dst AND source and destination src .and. dst — dst 0 * * *
BIC(.B) src,dst Clear bits in destination .not.src .and. dst — dst - - - -
BIS(.B) src,dst Set bits in destination src .or. dst — dst - - - -
BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *
BRT dst Branch to destination dst - PC - - - -
CALL dst Call destination PC+2 — stack, dst - PC - - - -
cLr(.B)t dst Clear destination 0 — dst - - - -
cLrct Clear C 0->C - - - 0
cLrit Clear N 0—>N - 0 - -
cLrzt Clear Z 02 - - 0 -
CMP (.B) src,dst Compare source and destination dst — src * * * *
papnc (.B)T dst Add C decimally to destination dst + C — dst (decimally) * * * *
DADD (.B) src,dst Add source and C decimally to dst. src + dst + C — dst (decimally) * * * *
pDEC(.B)T dst Decrement destination dst -1 — dst * * * *
DECD (.B)T dst Double-decrement destination dst -2 — dst * * * *
pINTt Disable interrupts 0- GIE - - - -
EINTT Enable interrupts 1 GIE - - - -
iNc (.B)t dst Increment destination dst +1 — dst * * * *
NcD (.B)T dst Double-increment destination dst+2 — dst * * * *
v (.B)t dst Invert destination .not.dst — dst * * * *
Jc/JHs label Jump if C set/Jump if higher or same - - - -
JEQ/JZ label Jump if equal/lJump if Z set - - - -
JGE label Jump if greater or equal - - - -
JL label Jump if less - - - -
JMP label Jump PC + 2 x offset - PC - - - -
JN label Jump if N set - - - -
JNC/JLO label Jump if C not set/Jump if lower - - - -
JNE/JNZ label Jump if not equal/Jump if Z not set - - - -
MOV (.B) src,dst Move source to destination src — dst - - - -
Nopt No operation - - - -
pop (.B)T dst Pop item from stack to destination @SP — dst, SP+2 — SP - - - -
PUSH (.B) src Push source onto stack SP -2 — SP, src - @SP - - - -
RETT Return from subroutine @SP - PC,SP+2—SP - - - -
RETI Return from interrupt * * * *
RLA(.B)T dst Rotate left arithmetically * * * *
RLC(.B)T dst Rotate left through C * * * *
RRA (.B) dst Rotate right arithmetically 0 * * *
RRC (.B) dst Rotate right through C * * * *
sBc(.B)t dst Subtract not(C) from destination dst + OFFFFh + C — dst * * * *
seTct Set C 1-C - - - 1
sETNt SetN 1N - 1 - -
seTzt SetzZ 1-C - - 1 -
SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 — dst * * * *
SUBC (.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C — dst * * * *
SWPB dst Swap bytes - - - -
SXT dst Extend sign 0 * * *
TsT(.B)T dst Test destination dst + OFFFFh + 1 0 * * 1

XOR (.B) src,dst

Exclusive OR source and destination

src .xor. dst — dst

t Emulated Instruction

RISC 16-Bit CPU 3-75

3-76 RISC 16-Bit CPU

Chapter 4

16-Bit MSP430X CPU

This chapter describes the extended MSP430X 16-bit RISC CPU with 1-MB
memory access, its addressing modes, and instruction set. The MSP430X
CPU is implemented in all MSP430 devices that exceed 64-KB of address

space.

Topic Page
41 CPUlIntroductionccuuuuuiiiiiiiiiiiiiiiiinnnennnnnns 4-2
(47 [MEIU[P S cooaoooo000 4-4
43 CPURBReQISterscoiiiiiiiniinnnnrnnenannnnnnnnernnnnns 4-5
44 AddressingModescc.iiiiiiiiiiiniaaiaraainraanas 4-15
4.5 MSP430 and MSP430X Instructionsoovvvnnnnn. 4-36
4.6 Instruction Set Descriptionccciiiiiiiiiiiaan 4-58

4-1

CPU Introduction

4.1 CPU Introduction

4-2

The MSP430X CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The MSP430X CPU can address
a 1-MB address range without paging. In addition, the MSP430X CPU has
fewer interrupt overhead cycles and fewer instruction cycles in some cases
than the MSP430 CPU, while maintaining the same or better code density than
the MSP430 CPU. The MSP430X CPU is completely backwards compatible
with the MSP430 CPU.

The MSP430X CPU features include:

4
4

4
4

RISC architecture.
Orthogonal architecture.

Full register access including program counter, status register and stack
pointer.

Single-cycle register operations.
Large register file reduces fetches to memory.

20-bit address bus allows direct access and branching throughout the
entire memory range without paging.

16-bit data bus allows direct manipulation of word-wide arguments.

Constant generator provides the six most often used immediate values
and reduces code size.

Direct memory-to-memory transfers without intermediate register holding.

Byte, word, and 20-bit address-word addressing

The block diagram of the MSP430X CPU is shown in Figure 4-1.

16-Bit MSP430X CPU

Figure 4—1. MSP430X CPU Block Diagram

16

MDB - Memory Data Bus

19 16 15

Memory Address Bus — MAB
AN

RO/PC Program Counter 0

1T

R1/SP Pointer Stack 0

[

R2/SR Status Register

N
—
N
—)
BN
—
(— EN
R3/CG2 Constant Generator y
| | |]
BN
<):‘/'\ R4 General Purpose)
1 I
R N
<):"> 5 General Purpose y
[| [[
(— BN
R6 General Purpose y
1 I
HEIN
<):‘/'\ R7 General Purpose y
[| []
EEN
<):‘/'\ R8 General Purpose]
[| []
EEN
<):’\‘/ R9 General Purpose y
[| [[
<):(> R10 General Purpose :>
[| []
EEN
<):’\> R11 General Purpose J
1 I
HEIN
<):"> R12 General Purpose y
[| []
(——\ EEN
R13 General Purpose)
1 I
<):"> R14 General Purpose)
1 I
EEN
<):"> R15 General Purpose y
1 1] 20
Zero, Z src -
Carry, C .
Overflow,V 16/20-bit ALU MCLK
Negative,N
N

CPU Introduction

16-Bit MSP430X CPU

4-3

Interrupts

4.2 Interrupts
The MSP430X uses the same interrupt structure as the MSP430:
(1 Vectored interrupts with no polling necessary
(1 Interrupt vectors are located downward from address OFFFEh

Interrupt operation for both MSP430 and MSP430X CPUs is described in
Chapter 2 System Resets, Interrupts, and Operating modes, Section 2
Interrupts. The interrupt vectors contain 16-bit addresses that point into the
lower 64-KB memory. This means all interrupt handlers must start in the lower
64-KB memory — even in MSP430X devices.

During an interrupt, the program counter and the status register are pushed
onto the stack as shown in Figure 4-2. The MSP430X architecture efficiently
stores the complete 20-bit PC value by automatically appending the PC bits
19:16 to the stored SR value on the stack. When the RETT instruction is
executed, the full 20-bit PC is restored making return from interrupt to any
address in the memory range possible.

Figure 4-2. Program Counter Storage on the Stack for Interrupts

SPoiq —W Item n—1
PC.15:0
SP —¥ PC.19:16 SR.11:0

4-4 16-Bit MSP430X CPU

CPU Registers

4.3 CPU Registers

The CPU incorporates sixteen registers RO to R15. Registers R0, R1, R2, and
R3 have dedicated functions. R4 to R15 are working registers for general use.

4.3.1 The Program Counter PC

The 20-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, six or
eight bytes), and the PC is incremented accordingly. Instruction accesses are
performed on word boundaries, and the PC is aligned to even addresses.
Figure 4-3 shows the program counter.

Figure 4-3. Program Counter PC
19 16 15 1.0

Program Counter Bits 19 to 1 0

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV.W #LABEL,PC; Branch to address LABEL (lower 64 KB)
MOVA #LABEL,PC; Branch to address LABEL (1MB memory)

MOV.W LABEL,PC ; Branch to address in word LABEL
; (lower 64 KB)

MOV.W @R14,PC ; Branch indirect to address in
; R14 (lower 64 KB)

ADDA #4,PC ; Skip two words (1 MB memory)

The BR and CALL instructions reset the upper four PC bits to 0. Only
addresses in the lower 64-KB address range can be reached with the BR or
CALL instruction. When branching or calling, addresses beyond the lower
64-KB range can only be reached using the BRA or CALLA instructions. Also,
any instruction to directly modify the PC does so according to the used
addressing mode. For example, MOV.W #value, PC will clear the upper four
bits of the PC because it is a . W instruction.

16-Bit MSP430X CPU 4-5

CPU Registers

The program counter is automatically stored on the stack with CALL, or CALLA
instructions, and during an interrupt service routine. Figure 4—-4 shows the
storage of the program counter with the return address after a CALLA
instruction. A CALL instruction stores only bits 15:0 of the PC.

Figure 4-4. Program Counter Storage on the Stack for CALLA

SPoig —®

ltemn

| pc.19:16

SP —»

PC.15:0

The RETA instruction restores bits 19:0 of the program counter and adds 4 to
the stack pointer. The RET instruction restores bits 15:0 to the program

counter and adds 2 to the stack pointer.

4-6 16-Bit MSP430X CPU

CPU Registers

4.3.2 Stack Pointer (SP)

The 20-bit stack pointer (SP/R1) is used by the CPU to store the return
addresses of subroutine calls and interrupts. It uses a predecrement,
postincrement scheme. In addition, the SP can be used by software with all
instructions and addressing modes. Figure 4-5 shows the SP. The SP is
initialized into RAM by the user, and is always aligned to even addresses.

Figure 4-6 shows the stack usage. Figure 4-7 shows the stack usage when
20-bit address-words are pushed.

Figure 4-5. Stack Pointer

19 10
Stack Pointer Bits 19 to 1 0
MOV.W 2(SP),R6 ; Copy Item I2 to R6
MOV.W R7,0(SP) ; Overwrite TOS with R7
PUSH #0123h ; Put 0123h on stack
POP R8 ; R8 = 0123h

Figure 4-6. Stack Usage

Address PUSH #0123h POP R8

Oxxxh 11 11 1

Oxxxh - 2 12 12 12

Oxxxh — 4 13 <— SP 13 13 <4— SP
Oxxxh — 6 0123h |&¢— SP

Oxxxh — 8

Figure 4-7. PUSHX.A Format on the Stack

SPoiq —W Item n—1

ltem.19:16

SP —p ltem.15:0

16-Bit MSP430X CPU 4-7

CPU Registers

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 4-8.

Figure 4-8. PUSH SP - POP SP Sequence

PUSH SP

SPoig —¥

SPy —» SPy

The stack pointer is changed after
a PUSH SP instruction.

4-8 16-Bit MSP430X CPU

POP SP

SP, —

SP,

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

4.3.3 Status Register (SR)

CPU Registers

The 16-bit status register (SR/R2), used as a source or destination register,
can only be used in register mode addressed with word instructions. The
remaining combinations of addressing modes are used to support the
constant generator. Figure 4-9 shows the SR bits. Do not write 20-bit values
to the SR. Unpredictable operation can result.

Figure 4-9. Status Register Bits

15 9 8 7 0
OSC|CPU
Reserved V | SCG1 | SCGO OFF|oFF GIE| N|Z|C
V
rw-0

Table 4-1 describes the status register bits.

Table 4—1.Description of Status Register Bits

Bit Description

Reserved Reserved

\Y Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.
ADD(.B), ADDX(.B, .A), Set when:
ADDC(.B), ADDCX(.B.A), positive + positive = negative
ADDA negative + negative = positive

otherwise reset

SUB(.B), SUBX(.B,.3A), Set when:
SUBC(.B),SUBCX(.B, .A), positive — negative = negative
SUBA, CMP(.B), negative — positive = positive
CMPX (.B, .A), CMPA otherwise reset

SCGH1 System clock generator 1. This bit, when set, turns off the DCO dc
generator if DCOCLK is not used for MCLK or SMCLK.

SCGO System clock generator 0. This bit, when set, turns off the FLL+ loop
control.

OSCOFF Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator
when LFXT1CLK is not used for MCLK or SMCLK.

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable inter-
rupts. When reset, all maskable interrupts are disabled.

N Negative bit. This bit is set when the result of an operation is negative

and cleared when the result is positive.

16-Bit MSP430X CPU 4-9

CPU Registers

Bit Description

4 Zero bit. This bit is set when the result of an operation is zero and
cleared when the result is not zero.

C Carry bit. This bit is set when the result of an operation produced a
carry and cleared when no carry occurred.

4-10 16-Bit MSP430X CPU

CPU Registers

4.3.4 The Constant Generator Registers CG1 and CG2

Six commonly used constants are generated with the constant generator
registers R2 (CG1) and R3 (CG2), without requiring an additional 16-bit word
of program code. The constants are selected with the source register
addressing modes (As), as described in Table 4-2.

Table 4-2.Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 - Register mode

R2 01 (0) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 FFh, FFFFh, FFFFFh -1, word processing

The constant generator advantages are:

(1 No special instructions required

(1 No additional code word for the six constants

(1 No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and RS,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator — Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.
INC dst

is replaced by:

ADD 0(R3),dst

16-Bit MSP430X CPU 4-11

CPU Registers

4.3.5 The General Purpose Registers R4 to R15

The twelve CPU registers R4 to R15, contain 8-bit, 16-bit, or 20-bit values. Any
byte-write to a CPU register clears bits 19:8. Any word-write to a register clears
bits 19:16. The only exception is the SXT instruction. The SXT instruction
extends the sign through the complete 20-bit register.

The following figures show the handling of byte, word and address-word data.
Note the reset of the leading MSBs, if a register is the destination of a byte or
word instruction.

Figure 4-10 shows byte handling (8-bit data, .B suffix). The handling is shown
for a source register and a destination memory byte and for a source memory
byte and a destination register.

Figure 4-10. Register-Byte/Byte-Register Operation

4-12

Register-Byte Operation

High Byte Low Byte
19 16 15 87 0
Un- .
used Unused Register
Memory

16-Bit MSP430X CPU

A 4

Operation)

Memory

Byte-Register Operation

High Byte

19 16 15

Low Byte

87 0

Un-

used

Unused

N

(Operation)

Memory

Register

Register

CPU Registers

Figure 4-11 and Figure 4-12 show 16-bit word handling (.W suffix). The
handling is shown for a source register and a destination memory word and
for a source memory word and a destination register.

Figure 4-11. Register-Word Operation
Register-Word Operation

High Byte Low Byte

19 16 15 87 0
Un- .
used Register
Memory

N

(Operation)

Memory

Figure 4-12. Word-Register Operation
Word-Register Operation

High Byte Low Byte

Memory
19 16 15 8|7 0
Un- .
used Register
y
(Operation)
y
0 Register

16-Bit MSP430X CPU 4-13

CPU Registers

Figure 4-13 and Figure 4-14 show 20-bit address-word handling (.A suffix).
The handling is shown for a source register and a destination memory
address-word and for a source memory address-word and a destination

register.

Figure 4-13. Register — Address-Word Operation
Register — Address-Word Operation
High Byte Low Byte

19 16 15 87 0
Register
Memory +2 Unused Memory
A A
(Operation)
A 4 A
Memory +2 0 Memory

Figure 4-14. Address-Word — Register Operation
Address-Word — Register Operation
High Byte Low Byte

19 16 15 87 0
Memory +2 Unused Memory
Register
A A
(Operation)
A A

Register

4-14 16-Bit MSP430X CPU

4.4 Addressing Modes

CPU Registers

Seven addressing modes for the source operand and four addressing modes
for the destination operand use 16-bit or 20-bit addresses. The MSP430 and
MSP430X instructions are usable throughout the entire 1-MB memory range.

Table 4-3.Source/Destination Addressing

As/Ad

Addressing Mode Syntax

Description

00/0
01/1

01/1

01/1

10/-

11/-

11/-

Register mode Rn

Indexed mode X(Rn)

Symbolic mode ADDR

Absolute mode &ADDR

Indirect register @Rn

mode

Indirect @Rn+

autoincrement

Immediate mode #N

Register contents are operand

(Rn + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word.

(PC + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(PC) is
used.

The word following the instruction
contains the absolute address. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(SR) is
used.

Rn is used as a pointer to the
operand.

Rn is used as a pointer to the
operand. Rn is incremented
afterwards by 1 for .B instructions.
by 2 for .W instructions, and by 4
for .A instructions.

N is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indirect autoincrement
mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note:

Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

16-Bit MSP430X CPU 4-15

CPU Registers

4.4.1 Register Mode

Operation: The operand is the 8-, 16-, or 20-bit content of the used CPU
register.

Length: One, two, or three words
Comment: Valid for source and destination

Byte operation: Byte operation reads only the 8 LSBs of the source register
Rsrc and writes the result to the 8 LSBs of the destination
register Rdst. The bits Rdst.19:8 are cleared. The register
Rsrc is not modified.

Word operation: Word operation reads the 16 LSBs of the source register Rsrc
and writes the result to the 16 LSBs of the destination register
Rdst. The bits Rdst.19:16 are cleared. The register Rsrc is not
modified.

Address-Word operation: Address-word operation reads the 20 bits of the
source register Rsrc and writes the result to the 20 bits of the
destination register Rdst. The register Rsrc is not modified

SXT Exception: The SXT instruction is the only exception for register
operation. The sign of the low byte in bit 7 is extended to the
bits Rdst.19:8.

Example: BIS.W R5,R6 ;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.

Before: After:
Address Register Address Register
Space Space
21036h xxxxh R5| AA550h 21036h xxxxh PC R5| AA550h
21034h| D506h PC R6 11111h 21034h D506h R6| 0B551h

A550h.or.1111h = B551h

4-16 16-Bit MSP430X CPU

Example:

BISX.A R5,R6

CPU Registers

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit

contents of R6.

The extension word contains the A/L-bit for 20-bit data. The instruction word
uses byte mode with bits A/L:B/W = 01. The result of the instruction is:

Before:
Address

Space

21036h xxxxh

21034h| D546h

21032h| 1800h

PC

R5
R6

Register

AA550h

11111h

After:
Address

Space

21036h| xxxxh PC R5

21034h| D546h R6
21032h| 1800h

AA550h.0or11111h = BB551h

16-Bit MSP430X CPU

Register

AA550h
BB551h

4-17

CPU Registers

4.4.2 Indexed Mode

The Indexed mode calculates the address of the operand by adding the signed
index to a CPU register. The Indexed mode has three addressing possibilities:

1 Indexed mode in lower 64-KB memory

[MSP430 instruction with Indexed mode addressing memory above the
lower 64-KB memory.

(O MSP430X instruction with Indexed mode

Indexed Mode in Lower 64 KB Memory

If the CPU register Rn points to an address in the lower 64 KB of the memory
range, the calculated memory address bits 19:16 are cleared after the addition
of the CPU register Rn and the signed 16-bit index. This means, the calculated
memory address is always located in the lower 64 KB and does not overflow
or underflow out of the lower 64-KB memory space. The RAM and the
peripheral registers can be accessed this way and existing MSP430 software
is usable without modifications as shown in Figure 4-15.

Figure 4-15. Indexed Mode in Lower 64 KB

Lower 64 KB.
Rn.19:16 =0
e 19 16 15 0
CPU Register
0
Rn
- - 16-bit
S 16-bit byte index
v signed index
10000
OFFFF + .
m .
% (16-bit signed add)
Rn.19:0— <
[
S
S 3 Y
00000 v 0 Memory address
Length: Two or three words
Operation: The signed 16-bit index is located in the next word after the

instruction and is added to the CPU register Rn. The resulting
bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range
00000h to OFFFFh. The operand is the content of the
addressed memory location.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

4-18 16-Bit MSP430X CPU

CPU Registers

Example: ADD.B 1000h(R5),0F000h(R6) ;

The previous instruction adds the 8-bit data contained in source byte
1000h(R5) and the destination byte OFO00h(R6) and places the result into the
destination byte. Source and destination bytes are both located in the lower
64 KB due to the cleared bits 19:16 of registers R5 and R6.

Source: The byte pointed to by R5 + 1000h results in address 0479Ch
+ 1000h = 0579Ch after truncation to a 16-bit address.

Destination: The byte pointed to by R6 + FOOOh results in address 01778h
+ FOO0Oh = 00778h after truncation to a 16-bit address.

Before: After:
Address Register Address Register
Space Space
1103Ah xxxxh R5| 0479Ch 1103Ah xxxxh PC R5| 0479Ch
11038h FOOOh R6| 01778h 11038h FOO0Oh R6| 01778h
11036h 1000h 11036h 1000h
11034h 55D6h | PC 11034h 55D6h
01778h 32h src
0077Ah xxxxh +F000h 0077Ah xxxxh +45h dst
00778h | xx4ash 00778h 00778h | xx77h 77h - Sum
0479Ch
0579Eh xxxxh +1000h 0579Eh xxxxh
0579Ch xx32h 0579Ch 0579Ch xx32h

16-Bit MSP430X CPU 4-19

CPU Registers

MSP430 Instruction with Indexed Mode in Upper Memory

If the CPU register Rn points to an address above the lower 64-KB memory,
the Rn bits 19:16 are used for the address calculation of the operand. The
operand may be located in memory in the range Rn £32 KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can

overflow or underflow into the lower 64-KB memory space. See Figure 4-16
and Figure 4-17.

Figure 4-16. Indexed Mode in Upper Memory

Upper Memory
Rn.19:16 > 0
* FFFFF
Rn.19:0—» Rn +32 KB
__10000
OFFFF
00000

»
»

Lower 64 KB

&
<

19 1615 0
1..15 CPU Register
Rn
s |s 16bitbyteindex | 16-Ditsigned index
(sign extended to
20 bits)
A\ 4
(20-bit signed add)
A A

Memory address

Figure 4—-17. Overflow and Underflow for the Indexed Mode

FFFFF
Y @
Rn.19:0—» N
\ +l

_ 10000
0,FFFF \NE
\ .
4
<
Rn.19:0 ©
[0
2
\ S

0000C k

4-20 16-Bit MSP430X CPU

Rn.19:0

_____ FQ.E:Q—_’&\\\\N |

NNy

A 4

NN

+32KB

NN

Length:

Operation:

Comment:

Example:

CPU Registers

Two or three words

The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of the CPU register Rn. This
delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the
addressed memory location.

Valid for source and destination. The assembler calculates
the register index and inserts it.

ADD.W 8346h(R5),2100h(R6) ;

This instruction adds the 16-bit data contained in the source and the
destination addresses and places the 16-bit result into the destination. Source
and destination operand can be located in the entire address range.

Source:

Destination:

The word pointed to by R5 + 8346h. The negative index
8346h is sign-extended, which results in address 23456h +
F8346h = 1B79Ch.

The word pointed to by R6 + 2100h results in address
15678h + 2100h = 17778h.

Figure 4-18. Example for the Indexed Mode

Before: After:
Address Register Address Register
Space Space
1103Ah xxxxh R5| 23456h 1103Ah xxxxh PC R5| 23456h
11038h 2100h R6| 15678h 11038h 2100h R6| 15678h
11036h 8346h 11036h 8346h
11034h 5596h PC 11034h 5596h
15678h 05432h src
1777Ah xxxxh +02100h 1777Ah xxxxh +02345h dst
17778h | 2345h 17778h 177780 | 7777h 07777h Sum
23456h
1B79Eh xxxxh +F8346h 1B79Eh xxxxh
1B79Ch 5432h 1879Ch 1B79Ch 5432h

16-Bit MSP430X CPU

4-21

CPU Registers

MSP430X Instruction with Indexed Mode

4-22

When using an MSP430X instruction with Indexed mode, the operand can be
located anywhere in the range of Rn = 19 bits.

Length:

Operation:

Comment:

Example:

Three or four words

The operand address is the sum of the 20-bit CPU register
content and the 20-bit index. The four MSBs of the index are
contained in the extension word, the 16 LSBs are contained
in the word following the instruction. The CPU register is not
modified.

Valid for source and destination. The assembler calculates
the register index and inserts it.

ADDX.A 12346h(R5),32100h(R6) ;

This instruction adds the 20-bit data contained in the source and the
destination addresses and places the result into the destination.

Source:

Destination:

16-Bit MSP430X CPU

Two words pointed to by R5 + 12346h which results in
address 23456h + 12346h = 3579Ch.

Two words pointed to by R6 + 32100h which results in
address 45678h + 32100h = 77778h.

CPU Registers

The extension word contains the MSBs of the source index and of the
destination index and the A/L-bit for 20-bit data. The instruction word uses byte
mode due to the 20-bit data length with bits A/L:B/W = 01.

Before:

2103Ah
21038h
21036h
21034h
21032h

7777Ah
77778h

3579Eh
3579Ch

Address
Space

xxxxh

2100h

2346h

55D6h

1883h

0001h

2345h

0006h

5432h

After:
Register Address Register
Space
R5| 23456h 2103Ah xxxxh PC R5| 23456h
R6| 45678h 21038h 2100h R6| 45678h

21036h 2346h
21034h 55D6h

PC 21032h 1883h
45678h 65432h src
+32100h 7777Ah | 0007h +12345h dst
77778h 77777h Sum

77778h 7777h

23456h
+12346h 3579Eh | 0006h

3579Ch
3579Ch 5432h

16-Bit MSP430X CPU 4-23

CPU Registers

4.4.3 Symbolic Mode

The Symbolic mode calculates the address of the operand by adding the
signed index to the program counter. The Symbolic mode has three
addressing possibilities:

[Symbolic mode in lower 64-KB memory

[MSP430 instruction with symbolic mode addressing memory above the
lower 64-KB memory.

(1 MSP430X instruction with symbolic mode

Symbolic Mode in Lower 64 KB

If the PC points to an address in the lower 64 KB of the memory range, the
calculated memory address bits 19:16 are cleared after the addition of the PC
and the signed 16-bit index. This means, the calculated memory address is
always located in the lower 64 KB and does not overflow or underflow out of
the lower 64-KB memory space. The RAM and the peripheral registers can be
accessed this way and existing MSP430 software is usable without
modifications as shown in Figure 4-15.

Figure 4—19. Symbolic Mode Running in Lower 64 KB

Lower 64 KB.
PC.19:16 =0
" FFFF 19 16 15 0
FFFFF
0 Program
counter PC
S 16-bit byte index 1 6'pit signed
PC index
__10000
OFFFF]
m . .
ﬁ (16-bit signed add)
PC.19:0—¥ S
[0
E
3) !
— 0 Memory address

Operation: The signed 16-bit index in the next word after the instruction is
added temporarily to the PC. The resulting bits 19:16 are cleared giving a
truncated 16-bit memory address, which points to an operand address in the
range 00000h, to OFFFFh. The operand is the content of the addressed
memory location.

Length: Two or three words

Comment: Valid for source and destination. The assembler calculates
the PC index and inserts it.

Example: ADD.B EDE,TONI ;

4-24 16-Bit MSP430X CPU

CPU Registers

The previous instruction adds the 8-bit data contained in source byte EDE and
destination byte TONI and places the result into the destination byte TONI.
Bytes EDE and TONI and the program are located in the lower 64 KB.

Source: Byte EDE located at address 0,579Ch, pointed to by PC +
4766h where the PC index 4766h is the result of 0579Ch —
01036h = 04766h. Address 01036h is the location of the index
for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC +
F740h, is the truncated 16-bit result of
00778h — 1038h = FF740h. Address 01038h is the location
of the index for this example.

Before: After:

Address Address
Space Space
0103Ah xxxxh 0103Ah xxxxh PC
01038h | F740h 01038h | F740h
01036h | 4766h 01036h | 4766h
01034h | 05DOh | PC 01034h | 50DON
01038h 32h src
0077Ah xxxxh +0QF740h 0077Ah xxxxh +45h dst
00778h | xx45h 00778h 00778h | xx77h 77h Sum
01036h
0579Eh xxxxh +04766h 0579Eh xxxxh
0579Ch xx32h 0579Ch 0579Ch xx32h

16-Bit MSP430X CPU 4-25

CPU Registers

MSP430 Instruction with Symbolic Mode in Upper Memory

If the PC points to an address above the lower 64-KB memory, the PC bits
19:16 are used for the address calculation of the operand. The operand may
be located in memory in the range PC +32 KB, because the index, X, is a
signed 16-bit value. In this case, the address of the operand can overflow or

underflow into the lower 64-KB memory space as shown in Figure 4-20 and
Figure 4-21.

Figure 4-20. Symbolic Mode Running in Upper Memory

Upper Memory
PC.19:16 >0
* FFFFF
PC.19:0 —» PC £32 KB
__10000
OFFFF
00000 \

Lower 64 KB

19 1615 0
Program
1..15 counter PC
s |s 1tebitbyteindex | 16-Ditsigned PC
index (sign
extended to
20 bits)
A\ 4
(20-bit signed add)
A A

Memory address

Figure 4-21. Overflow and Underflow for the Symbolic Mode

~FRFEF
Y 0
PC.19:O—>\ Y
N\ ot
10000
OFFFF x +
m
¥
<
PC.19:0 ¥ ©
[
=
3

0000C

N

&

4-26 16-Bit MSP430X CPU

_____ : Q.B:O_—:N

Ny
NAANNNN

PC.19:0—»

+32KB

&

NN

Length:

Operation:

Comment:

Example:

CPU Registers

Two or three words

The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of the PC. This delivers a
20-bit address, which points to an address in the range 0 to
FFFFFh. The operand is the content of the addressed
memory location.

Valid for source and destination. The assembler calculates
the PC index and inserts it

ADD.W EDE, &TONI ;

This instruction adds the 16-bit data contained in source word EDE and
destination word TONI and places the 16-bit result into the destination word
TONI. For this example, the instruction is located at address 2,F034h.

Source: Word EDE at address 3379Ch, pointed to by PC + 4766h
which is the 16-bit result of 3379Ch — 2F036h = 04766h.
Address 2F036h is the location of the index for this example.
Destination: Word TONI located at address 00778h pointed to by the
absolute address 00778h.
Before: After:
Address Address
Space Space
2F03Ah xxxxh 2F03Ah xxxxh PC
2F038h | 0778h 2F038h | 0778h
2F036h | 4766h 2F036h | 4766h
2F034h | 5092h | PC 2F034h | 5092h
2F036h
3379Eh xxxxh +04766h 3379Eh xxxxh
3379Ch | 5432h 3379Ch 3379Ch | 5432h
5432h src
0077Ah xxxxh 0077Ah xxxxh +2345h dst
00778h | 2345h 00778h | 7777h 7777h Sum

16-Bit MSP430X CPU 4-27

CPU Registers

MSP430X Instruction with Symbolic Mode

When using an MSP430X instruction with Symbolic mode, the operand can
be located anywhere in the range of PC + 19 bits.

Length: Three or four words

Operation: The operand address is the sum of the 20-bit PC and the
20-bit index. The four MSBs of the index are contained in the
extension word, the 16 LSBs are contained in the word
following the instruction.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

Example: ADDX.B EDE,TONI ;

The instruction adds the 8-bit data contained in source byte EDE and
destination byte TONI and places the result into the destination byte TONI.

Source: Byte EDE located at address 3579Ch, pointed to by
PC + 14766h, is the 20-bit result of
3579Ch - 21036h = 14766h. Address 21036h is the address
of the index in this example.

Destination: Byte TONI located at address 77778h, pointed to by
PC + 56740h, is the 20-bit result of
77778h - 21038h = 56740h. Address 21038h is the address
of the index in this example..

Before: Address Space After: Address Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 6740h 21038h 6740h
21036h 4766h 21036h 4766h
21034h 50D0h 21034h 50DO0h
21032h 18C5h PC 21032h 18C5h
21038h 32h src
7777Ah xxxxh +56740h 7777Ah xxxxh +45h dst
77778h xx45h 77778h 77778h XX77h 77h Sum
21036h
3579Eh xxxxh ___+14766h 3579Eh xxxxh
3579Ch
3579Ch xx32h 3579Ch xx32h

4-28 16-Bit MSP430X CPU

CPU Registers
4.4.4 Absolute Mode

The Absolute mode uses the contents of the word following the instruction as
the address of the operand. The Absolute mode has two addressing
possibilities:

(1 Absolute mode in lower 64-KB memory

(O MSP430X instruction with Absolute mode

16-Bit MSP430X CPU 4-29

CPU Registers

Absolute Mode in Lower 64 KB

4-30

If an MSP430 instruction is used with Absolute addressing mode, the absolute
address is a 16-bit value and therefore points to an address in the lower 64 KB
of the memory range. The address is calculated as an index from 0 and is
stored in the word following the instruction The RAM and the peripheral
registers can be accessed this way and existing MSP430 software is usable
without modifications.

Length: Two or three words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates

the index from 0 and inserts it
Example: ADD.W &EDE, &TONI ;

This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Word at address EDE

Destination: Word at address TONI

Before: Address Space After: Address Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 7778h 21038h 7778h
21036h 579Ch 21036h 579Ch
21034h 5292h PC 21034h 5292h
5432h src
0777Ah xxxxh 0777Ah xxxxh +2345h dst
07778h | 2345h o7778h | 7777h 7777h - Sum
0579Eh xxxxh 0579Eh xxxxh
0579Ch 5432h 0579Ch 5432h

16-Bit MSP430X CPU

CPU Registers

MSP430X Instruction with Absolute Mode

If an MSP430X instruction is used with Absolute addressing mode, the
absolute address is a 20-bit value and therefore points to any address in the
memory range. The address value is calculated as an index from 0. The four
MSBs of the index are contained in the extension word, and the 16 LSBs are
contained in the word following the instruction.

Length: Three or four words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates

the index from 0 and inserts it
Example: ADDX.A &EDE, &TONI ;

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Two words beginning with address EDE

Destination: Two words beginning with address TONI

Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 7778h 21038h 7778h
21036h 579Ch 21036h 579Ch
21034h 52D2h 21034h 52D2h
21032h 1987h PC 21032h 1987h

65432h src

7777Ah 0001h 7777Ah 0007h +12345h dst
77778h | 2345h 777780 | 77770 | 77777h Sum
3579Eh 0006h 3579Eh 0006h
3579Ch 5432h 3579Ch 5432h

16-Bit MSP430X CPU 4-31

CPU Registers

4.4.5 Indirect Register Mode

The Indirect Register mode uses the contents of the CPU register Rsrc as the
source operand. The Indirect Register mode always uses a 20-bit address.

Length:

Operation:

Comment:

Example:

This instru

One, two, or three words

The operand is the content the addressed memory location.
The source register Rsrc is not modified.

Valid only for the source operand. The substitute for the
destination operand is O(Rdst).

ADDX.W @R5,2100h(R6)

ction adds the two 16-bit operands contained in the source and the

destination addresses and places the result into the destination.

Source:

Word pointed to by R5. R5 contains address 3,579Ch for this
example.

Destination: Word pointed to by R6 + 2100h which results in address

45678h + 2100h = 7778h.

Before: After:

Address Register Address Register

Space Space
21038h xxxxh R5| 3579Ch 21038h xxxxh PC R5| 3579Ch
21036h 2100h R6| 45678h 21036h 2100h R6| 45678h
21034h 55A6h PC 21034h 55A6h

45678h 5432h src

4777Ah xxxxh +02100h 4777Ah xxxxh +2345h dst
47778h 2345h 47778h 47778h 7777h 7777h Sum
3579Eh xxxxh 3579Eh xxxxh
3579Ch 5432h | R5 3579Ch 5432h | R5

4-32 16-Bit MSP430X CPU

CPU Registers

4.4.6 Indirect, Autoincrement Mode

The Indirect Autoincrement mode uses the contents of the CPU register Rsrc
as the source operand. Rsrc is then automatically incremented by 1 for byte
instructions, by 2 for word instructions, and by 4 for address-word instructions
immediately after accessing the source operand. If the same register is used
for source and destination, it contains the incremented address for the
destination access. Indirect Autoincrement mode always uses 20-bit

addresses.

Length: One, two, or three words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid only for the source operand.

Example: ADD.B @R5+,0(R6)

This instruction adds the 8-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Byte pointed to by R5. R5 contains address 3,579Ch for this
example.

Destination: Byte pointed to by R6 + Oh which results in address 0778h for

this example.
Before: After:

Address Register Address Register

Space Space
21038h xxxxh R5| 3579Ch 21038h xxxxh PC R5| 3579Dh
21036h 0000h R6| 00778h 21036h 0000h R6| 00778h
21034h 55F6h PC 21034h 55F6h

00778h 32h src

0077Ah xxxxh +0000h 0077Ah xxxxh +45h dst
00778h | xx4sh 00778h 00778h | xx77h 77h - Sum
3579Dh xxh 3579Dh xxh R5
3579Ch 32h R5 3579Ch xx32h

16-Bit MSP430X CPU 4-33

CPU Registers

4.4.7 Immediate Mode

The Immediate mode allows accessing constants as operands by including
the constant in the memory location following the instruction. The program
counter PC is used with the Indirect Autoincrement mode. The PC points to
the immediate value contained in the next word. After the fetching of the
immediate operand, the PC is incremented by 2 for byte, word, or
address-word instructions. The Immediate mode has two addressing
possibilities:

[8- or 16-bit constants with MSP430 instructions

[20-bit constants with MSP430X instruction

MSP430 Instructions with Immediate Mode

If an MSP430 instruction is used with Immediate addressing mode, the
constant is an 8- or 16-bit value and is stored in the word following the

instruction.

Length: Two or three words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 16-bit immediate source operand is used together with
the 16-bit destination operand.

Comment: Valid only for the source operand.

Example: ADD #3456h, &TONI

This instruction adds the 16-bit immediate operand 3456h to the data in the
destination address TONI.

Source: 16-bit immediate value 3456h.

Destination: Word at address TONI.

Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 0778h 21038h 0778h
21036h 3456h 21036h 3456h
21034h 50B2h PC 21034h 50B2h

3456h src

0077Ah xxxxh 0077Ah xxxxh +2345h dst
00778h | 2345h 00778h | 5798 | 579BNh Sum

4-34 16-Bit MSP430X CPU

CPU Registers

MSP430X Instructions with Immediate Mode

If an MSP430X instruction is used with immediate addressing mode, the
constant is a 20-bit value. The 4 MSBs of the constant are stored in the
extension word and the 16 LSBs of the constant are stored in the word
following the instruction.

Length: Three or four words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 20-bit immediate source operand is used together with
the 20-bit destination operand.

Comment: Valid only for the source operand.
Example: ADDX.A #23456h, &TONI ;

This instruction adds the 20-bit immediate operand 23456h to the data in the
destination address TONI.

Source: 20-bit immediate value 23456h.

Destination: Two words beginning with address TONI.

Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 7778h 21038h 7778h
21036h 3456h 21036h 3456h
21034h 50F2h 21034h 50F2h
21032h 1907h PC 21032h 1907h

23456h src

7777Ah 0001h 7777Ah 0003h +12345h dst
777780 | 2345h 777780 | 57098 | 3579Bh Sum

16-Bit MSP430X CPU 4-35

MSP430 and MSP430X Instructions

4.5 MSP430 and MSP430X Instructions

MSP430 instructions are the 27 implemented instructions of the MSP430
CPU. These instructions are used throughout the 1-MB memory range unless
their 16-bit capability is exceeded. The MSP430X instructions are used when
the addressing of the operands or the data length exceeds the 16-bit capability
of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and
MSP430X instruction:

(1 To use only the MSP430 instructions: The only exceptions are the CALLA
and the RETA instruction. This can be done if a few, simple rules are met:

W Placement of all constants, variables, arrays, tables, and data in the
lower 64 KB. This allows the use of MSP430 instructions with 16-bit
addressing for all data accesses. No pointers with 20-bit addresses
are needed.

B Placement of subroutine constants immediately after the subroutine
code. This allows the use of the symbolic addressing mode with its
16-bit index to reach addresses within the range of PC +32 KB.

(1 To use only MSP430X instructions: The disadvantages of this method are
the reduced speed due to the additional CPU cycles and the increased
program space due to the necessary extension word for any double
operand instruction.

(1 Use the best fitting instruction where needed

The following sections list and describe the MSP430 and MSP430X
instructions.

4-36 16-Bit MSP430X CPU

MSP430 and MSP430X Instructions

4.5.1 MSP430 Instructions

The MSP430 instructions can be used, regardless if the program resides in the
lower 64 KB or beyond it. The only exceptions are the instructions CALL and
RET which are limited to the lower 64 KB address range. CALLA and RETA
instructions have been added to the MSP430X CPU to handle subroutines in
the entire address range with no code size overhead.

MSP430 Double Operand (Format I) Instructions

Figure 4-22 shows the format of the MSP430 double operand instructions.
Source and destination words are appended for the Indexed, Symbolic,
Absolute and Immediate modes. Table 4-4 lists the twelve MSP430 double
operand instructions.

Figure 4-22. MSP430 Double Operand Instruction Format

15 12 1 8 7 6 5 4 0

Op-code Rsrc Ad | B/W As Rdst

Source or Destination 15:0

Destination 15:0

Table 4-4.MSP430 Double Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V N z ¢
MOV (.B) src,dst src — dst - - - -
ADD(.B) src,dst src+ dst — dst * * * *
ADDC(.B) src,dst src+dst+C — dst * * * *
SUB(.B) src,dst dst+ .not.src + 1 — dst * * * *
SUBC(.B) src,dst dst+.not.src+ C — dst * * * *
CMP (.B) src,dst dst-src * * * *
DADD(.B) src,dst src+dst+ C — dst(decimally) * * * *
BIT(.B) src,dst src.and. dst 0 * * 4
BIC(.B) src,dst .not.src .and. dst — dst - - - -
BIS(.B) src,dst src.or. dst — dst - - - -
XOR (.B) src,dst src.xor. dst — dst * * * d
AND (.B) src,dst src.and. dst — dst 0 * * i

*

The status bit is affected

— The status bit is not affected
0 The status bit is cleared
The status bit is set

16-Bit MSP430X CPU 4-37

MSP430 and MSP430X Instructions

Single Operand (Format Il) Instructions

Figure 4-23 shows the format for MSP430 single operand instructions, except
RETI. The destination word is appended for the Indexed, Symbolic, Absolute
and Immediate modes .Table 4-5 lists the seven single operand instructions.

Figure 4-23. MSP430 Single Operand Instructions

15 7 6 5 4 0

Op-code B/W Ad Rdst

Destination 15:0

Table 4-5.MSP430 Single Operand Instructions

Mnemonic S-Reg, Operation Status Bits

D-Reg V N z ¢
RRC(.B) dst C->MSB....... LSB - C * * * *
RRA(.B) dst MSB - MSB —....LSB - C 0 * * *
PUSH(.B) src SP -2 SP, src - @SP - - - -
SWPB dst bit 15...bit 8 < bit 7...bit 0 - - - -
CALL dst Call subroutine in lower 64 KB - - - -
RETI TOS - SR, SP +2 - SP * * * *

TOS - PC,SP +2 - SP

SXT dst Register mode: 0 * * Z

bit 7 — bit 8 ...bit 19
Other modes:
bit 7 — bit 8 ...bit 15

The status bit is affected

- The status bit is not affected
0 The status bit is cleared

1 The status bit is set

4-38 16-Bit MSP430X CPU

MSP430 and MSP430X Instructions

Jumps

Figure 4—24 shows the format for MSP430 and MSP430X jump instructions.
The signed 10-bit word offset of the jump instruction is multiplied by two,
sign-extended to a 20-bit address, and added to the 20-bit program counter.
This allows jumps in a range of -511 to +512 words relative to the program
counter in the full 20-bit address space Jumps do not affect the status bits.
Table 4-6 lists and describes the eight jump instructions.

Figure 4-24. Format of the Conditional Jump Instructions

15 13 12 10 9 8 0

Op-Code Condition S 10-Bit Signed PC Offset

Table 4-6.Conditional Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set
JNE/JNZ Label Jump to label if zero bit is reset
Jc Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N .XOR. V) =0
JL Label Jump to label if (N .XOR. V) = 1
JMP Label Jump to label unconditionally

16-Bit MSP430X CPU 4-39

MSP430 and MSP430X Instructions

Emulated Instructions

In addition to the MSP430 and MSP430X instructions, emulated instructions
are instructions that make code easier to write and read, but do not have
op-codes themselves. Instead, they are replaced automatically by the
assembler with a core instruction. There is no code or performance penalty for
using emulated instructions. The emulated instructions are listed in Table 4-7.

Table 4-7.Emulated Instructions

Instruction

Explanation

Emulation V N Z

ADC(.B) dst
BR dst
CLR(.B) dst
CLRC

CLRN

CLRZ
DADC(.B) dst
DEC(.B) dst
DECD(.B) dst
DINT

EINT

INC(.B) dst
INCD(.B) dst
INV(.B) dst
NOP

POP dst

RET

RLA(.B) dst
RLC(.B) dst

SBC(.B) dst
SETC
SETN
SETZ
TST(.B) dst

Add Carry to dst

Branch indirectly dst
Clear dst

Clear Carry bit

Clear Negative bit

Clear Zero bit

Add Carry to dst decimally
Decrement dst by 1
Decrement dst by 2
Disable interrupt

Enable interrupt
Increment dst by 1
Increment dst by 2

Invert dst

No operation

Pop operand from stack
Return from subroutine
Shift left dst arithmetically

Shift left dst
logically through Carry

Subtract Carry from dst
Set Carry bit

Set Negative bit

Set Zero bit

Test dst
(compare with 0)

ADDC (.B) #0,dst
MOV dst, PC

MOV (.B) #0,dst
BIC #1,SR

BIC #4,SR

BIC #2,SR
DADD(.B) #0,dst
SUB(.B) #1,dst
SUB(.B) #2,dst
BIC #8,SR

BIS #8,SR
ADD(.B) #1,dst
ADD (.B) #2,dst
XOR(.B) #-1,dst
MOV R3,R3

MOV @SP+,dst
MOV @SP+, PC
ADD(.B) dst,dst
ADDC(.B) dst,dst

SUBC(.B) #0,dst
BIS #1,SR
BIS #4,SR
BIS #2,SR
CMP (.B) #0,dst

16-Bit MSP430X CPU

MSP430 and MSP430X Instructions

MSP430 Instruction Execution

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to MCLK.

Instruction Cycles and Length for Interrupt, Reset, and Subroutines
Table 4-8 lists the length and the CPU cycles for reset, interrupts and
subroutines.

Table 4-8.Interrupt, Return and Reset Cycles and Length

Execution Time Length of

Action MCLK Cycles Instruction (Words)
Return from interrupt RETI 3t 1

Return from subroutine RET 3 1

Interrupt request service (cycles 5t -

needed before 18tinstruction)

WDT reset 4 -

Reset (RST/NMI) 4 -

T The cycle count in MSP430 CPU is 5.
* The cycle count in MSP430 CPU is 6.

16-Bit MSP430X CPU 4-41

MSP430 and MSP430X Instructions

Format-Ill (Single Operand) Instruction Cycles and Lengths

Table 4-9 lists the length and the CPU cycles for all addressing modes of the
MSP430 single operand instructions.

Table 4-9.MSP430 Format-Il Instruction Cycles and Length

No. of Cycles Length of
Instruction Example
Addressing RRA, RRC Length of
Mode SWPB,SXT PUSH CALL Instruction Example
Rn 1 3 3t 1 SWPB R5
@Rn 3 3t 4 1 RRC @R9
@Rn+ 3 3t 4% 1 SWPB @R10+
#N n.a. 3t 4% 2 CALL #LABEL
X(Rn) 4 4% 4% 2 CALL 2(R7)
EDE 4 4% 4% 2 PUSH EDE
&EDE 4 4% 4% 2 SXT &EDE

T The cycle count in MSP430 CPU is 4.
1 The cycle count in MSP430 CPU is 5. Also, the cycle count is 5 for X(Rn) addressing mode, when
Rn = SP.

Jump Instructions. Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

4-42 16-Bit MSP430X CPU

Format-I (Double Operand) Instruction Cycles and Lengths

MSP430 and MSP430X Instructions

Table 4-10 lists the length and CPU cycles for all addressing modes of the

MSP430 format-| instructions.

Table 4-10.MSP430 Format-I Instructions Cycles and Length

Addressing Mode No. of Length of
Src Dst Cycles Instruction Example
Rn Rm 1 MOV R5,RS8
PC 2 1 BR R9
x(Rm) 4t 2 ADD R5,4(R6)
EDE 4t 2 XOR R8,EDE
&EDE 4t 2 MOV RS, &EDE
@Rn Rm 2 1 AND @R4,R5
PC 3 1 BR @R8
x(Rm) 5t 2 XOR @R5,8(R6)
EDE 5t 2 MOV @R5,EDE
&EDE 5t 2 XOR @R5, &EDE
@Rn+ Rm 2 1 ADD @R5+,R6
PC 3 1 BR @RI+
x(Rm) 5t 2 XOR @R5,8(R6)
EDE 5t 2 MOV @R9+,EDE
&EDE 5t 2 MOV @R9+, &EDE
#N Rm 2 2 MOV #20,R9
PC 3 2 BR #2AEh
x(Rm) 5t 3 MOV #0300h, 0 (SP)
EDE 5t 3 ADD #33,EDE
&EDE 5t 3 ADD #33,&EDE
x(Rn) Rm 3 2 MOV 2 (R5) ,R7
PC 3 2 BR 2 (R6)
TONI 6t 3 MOV 4 (R7),TONI
x(Rm) 6t 3 ADD 4 (R4),6(R9)
&TONI 6t 3 MOV 2 (R4),&TONI
EDE Rm 3 2 AND EDE,R6
PC 3 2 BR EDE
TONI 6t 3 CMP EDE, TONI
x(Rm) 6t 3 MOV EDE, 0 (SP)
&TONI 6t 3 MOV EDE, &TONI
&EDE Rm 3 2 MOV &EDE,RS8
PC 3 2 BR &EDE
TONI 6t 3 MOV &EDE, TONI
x(Rm) 6t 3 MOV &EDE, 0 (SP)
&TONI 6t 3 MOV &EDE, &TONI

T MOV, BIT, and CMP instructions execute in 1 fewer cycle

16-Bit MSP430X CPU 4-43

MSP430X Extended Instructions

4.5.2 MSP430X Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its
20-bit address space. Most MSP430X instructions require an additional word
of op-code called the extension word. Some extended instructions do not
require an additional word and are noted in the instruction description. All
addresses, indexes and immediate numbers have 20-bit values, when
preceded by the extension word.

There are two types of extension word:

(1 Register/register mode for Format-I instructions and register mode for
Format-1l instructions.

(1 Extension word for all other address mode combinations.

4-44 16-Bit MSP430X CPU

MSP430X Extended Instructions

Register Mode Extension Word

The register mode extension word is shown in Figure 4-25 and described in
Table 4—-11. An example is shown in Figure 4-27.

Figure 4-25. The Extension Word for Register Modes

15 12 11 10 9 8 7 6 5 4 3 0

0001 1 00 zc| # |aLl o] o (n=1)/Rn

Table 4-11.Description of the Extension Word Bits for Register Mode

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension
words.

10:9 Reserved

ZC Zero carry bit.

0: The executed instruction uses the status of the carry bit C.

1: The executed instruction uses the carry bit as 0. The carry bit will
be defined by the result of the final operation after instruction execu-

tion.
Repetition bit.
0: The number of instruction repetitions is set by extension-word bits
3:0.

1: The number of instructions repetitions is defined by the value of the
four LSBs of Rn. See description for bits 3:0.

AL Data length extension bit. Together with the B/W-bits of the following
MSP430 instruction, the AL bit defines the used data length of the
instruction.

AL B/W Comment
0 0 Reserved
0 1 20-bit address-word
1 0 16-bit word
1 1 8-bit byte

5:4 Reserved
3.0 Repetition Count.
#=0: These four bits set the repetition count n. These bits contain
n-1.

#=1: These four bits define the CPU register whose bits 3:0 set the
number of repetitions. Rn.3:0 contain n - 1.

16-Bit MSP430X CPU 4-45

MSP430X Extended Instructions

Non-Register Mode Extension Word

The extension word for non-register modes is shown in Figure 4-26 and
described in Table 4-12. An example is shown in Figure 4-28.

Figure 4-26. The Extension Word for Non-Register Modes

15 12 11 10 7 6 5 4 3 0

0 0 0 1 1 Source bits 19:16 AL| O 0 [Destination bits 19:16

Table 4-12.Description of the Extension Word Bits for Non-Register Modes

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are exten-
sion words.

Source Bits The four MSBs of the 20-bit source. Depending on the source

19:16 addressing mode, these four MSBs may belong to an immedi-

ate operand, an index or to an absolute address.

AL Data length extension bit. Together with the B/W-bits of the fol-
lowing MSP430 instruction, the AL bit defines the used data
length of the instruction.

AL B/W Comment
0 0 Reserved
0 1 20 bit address-word
1 0 16 bit word
1 1 8 bit byte
5:4 Reserved

Destination Bits The four MSBs of the 20-bit destination. Depending on the des-
19:16 tination addressing mode, these four MSBs may belong to an
index or to an absolute address.

Note: B/W and A/L Bit Settings for SWPBX and SXTX
The B/W and A/L bit settings for SWPBX and SXTX are:

A/L B/W

0 0 SWPBX.A, SXTX.A
0 1 n.a.

1 0 SWPB.W, SXTX.W
1 1 n.a.

4-46 16-Bit MSP430X CPU

MSP430X Extended Instructions

Figure 4-27. Example for an Extended Register/Register Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 00 ZC| # | AL Rsvd (n-1)/Rn

Op-code Rsrc Ad | B/W As Rdst

XORX.A R9,RS8

1: Repetition count
in bits 3:0

0: Use Carry 01: Address word

|

0 0 0 1 1 0 0 0 0 l 0 0
14(XOR) 9 0 1 0 8(R8)
XORX instruction Source R9 T Destination R8
Destination

register mode
9 Source

register mode

Figure 4-28. Example for an Extended Immediate/Indexed Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Source 19:16 A/L Rsvd Destination 19:16

Op-code Rsrc Ad | B/W As Rdst

Source 15:0

Destination 15:0

XORX.A #12345h, 45678h(R15)

X(Rn)
01: Address @PC+
ord
18xx extension word 12345h /7
0 0 0 1 1 1 l Ol 0 4
14 (XOR) 0 (PC) 1] 1 3 15 (R15)

Immediate operand LSBs: 2345h

Index destination LSBs: 5678h

16-Bit MSP430X CPU 4-47

MSP430X Extended Instructions

Extended Double Operand (Format-l) Instructions

All twelve double-operand instructions have extended versions as listed in
Table 4-13.

Table 4-13.Extended Double Operand Instructions

Status Bits
Mnemonic Operands Operation V N Zz C
MOVX (.B, .A) src,dst src — dst - - - =
ADDX (.B, .A) src,dst src + dst — dst oo
ADDCX (.B, .A) src,dst src + dst + C — dst ooroox
SUBX (.B, .A) src,dst dst + .not.src + 1 — dst ooxrox
SUBCX (.B, .A) src,dst dst + .not.src + C — dst ooxox
CMPX (.B, .A) src,dst dst —src oo
DADDX (.B, .A) src,dst src + dst + C — dst (decimal) oo
BITX(.B,.A) src,dst src .and. dst o * * Z
BICX(.B, .A) src,dst .not.src .and. dst — dst - - - -
BISX(.B, .A) src,dst src .or. dst — dst - - - =
XORX (.B, .A) src,dst src .xor. dst — dst * ox x 7
ANDX (.B, .A) src,dst src .and. dst — dst o * * Z

*

The status bit is affected

- The status bit is not affected
0 The status bit is cleared

1 The status bit is set

4-48 16-Bit MSP430X CPU

MSP430X Extended Instructions

The four possible addressing combinations for the extension word for format-1
instructions are shown in Figure 4-29.

Figure 4-29. Extended Format-I Instruction Formats

15 14 13 12 M 10 9 8 7 6 5 4 3 0
0 0 0 1 1 0 0 |zZC| # JAL] O 0 n-1/Rn
Op-code src 0 |[BW] O 0 dst
0 0 0 1 1 src.19:16 ALl O 0 0 0 0 0
Op-code src Ad | B/W As dst
src.15:0
0 0 0 1 1 0 0 0 0 |AL] O 0 dst.19:16
Op-code src Ad | B/W As dst
dst.15:0
0 0 0 1 1 src.19:16 ALl O 0 dst.19:16
Op-code src Ad |B/W As dst
src.15:0
dst.15:0

If the 20-bit address of a source or destination operand is located in memory,
not in a CPU register, then two words are used for this operand as shown in
Figure 4-30.

Figure 4-30. 20-Bit Addresses in Memory

15 14 13 12 1 10 9 8 7 6 5 4 3 2 A1 0

AAArESSH2 | 0 e e 0 19:16

Address Operand LSBs 15:0

16-Bit MSP430X CPU 4-49

MSP430X Extended Instructions

Extended Single Operand (Format-Il) Instructions

Extended MSP430X Format-Il instructions are listed in Table 4-14.

Table 4—-14.Extended Single-Operand Instructions

Operation Status Bits
Mnemonic Operands n V N Z C
CALLA dst Call indirect to subroutine (20-bit address) - - - -
POPM.A #n,Rdst Pop n 20-bit registers from stack 1-16 - - - -
POPM.W #n,Rdst Pop n 16-bit registers from stack 1-16 - - - -
PUSHM.A #n,Rsrc Push n 20-bit registers to stack 1-16 - - - -
PUSHM.W #n,Rsrc Push n 16-bit registers to stack 1-16
PUSHX (.B, .A) src Push 8/16/20-bit source to stack - - - -
RRCM(.A) #n,Rdst Rotate right Rdst n bits through carry 1-4 0 * * *
(16-/20-bit register)
RRUM(.A) #n,Rdst Rotate right Rdst n bits unsigned 1i-4 0 * * ~
(16-/20-bit register)
RRAM (.A) #n,Rdst Rotate right Rdst n bits arithmetically 1-4 * > * =
(16-/20-bit register)
RLAM (.A) #n,Rdst Rotate left Rdst n bits arithmetically 1-4 * * > =
(16-/20-bit register)
RRCX(.B, .A) dst Rotate right dst through carry 1 o * *
(8-/16-/20-bit data)
RRUX (.B, .A) dst Rotate right dst unsigned (8-/16-/20-bit) 1 o * * =
RRAX (.B, .A) dst Rotate right dst arithmetically 1 ooxox
SWPBX (.A) dst Exchange low byte with high byte 1 - - - -
SXTX (.A) Rdst Bit7 — bit8 ... bit19 1 orr
SXTX (.A) dst Bit7 — bit8 ... MSB 1 orr

4-50 16-Bit MSP430X CPU

MSP430X Extended Instructions

The three possible addressing mode combinations for format-Il instructions
are shown in Figure 4-31.

Figure 4-31. Extended Format-Il Instruction Format

15 14 13 12 11 10 8 7 6 5 0
ololJo|J1]1]o zc| # |AaL] o n-1/Rn
Op-code B/w| O dst
ololJo|J1]1]o o) ofjaAaL]o ojlojo
Op-code B/wW| 1 dst
oJojJo 1]+ 0 ol o |AL] O dst.19:16
Op-code B/W]| X dst
dst.15:0
Extended Format Il Instruction Format Exceptions
Exceptions for the Format Il instruction formats are shown below.
Figure 4-32. PUSHM/POPM Instruction Format
15 8 7 0
Op-code n-1 Rdst — n+1
Figure 4-33. RRCM, RRAM, RRUM and RLAM Instruction Format
15 12 11 10 0
C n-1 Op-code Rdst
16-Bit MSP430X CPU 4-51

MSP430X Extended Instructions

Figure 4-34. BRA Instruction Format

15 12 1N 8 7 3 0
Rsrc Op-code 0(PC)
#imm/abs19:16 Op-code 0(PC)
#imm15:0 / &abs15:0
Rsrc Op-code 0(PC)
index15:0
Figure 4-35. CALLA Instruction Format
15 3 0
Op-code Rdst
Op-code Rdst
index15:0
Op-code #imm/ix/abs19:16
#imm15:0 / index15:0 / &abs15:0
16-Bit MSP430X CPU

4-52

Extended Emulated Instructions

Table 4-15.Extended Emulated Instructions

MSP430X Extended Instructions

The extended instructions together with the constant generator form the
extended Emulated instructions. Table 4-15 lists the Emulated instructions.

Instruction

Explanation

Emulation

ADCX (.B, .A) dst
BRA dst

RETA

CLRA Rdst
CLRX(.B, .A) dst
DADCX (.B, .A) dst
DECX (.B, .A) dst
DECDA Rdst

DECDX (.B, .A) dst
INCX(.B, .A) dst
INCDA Rdst

INCDX (.B, .A) dst
INVX(.B, .A) dst
RLAX(.B, .A) dst
RLCX(.B, .A) dst
SBCX (.B, .A) dst
TSTA Rdst
TSTX(.B, .A) dst

POPX dst

Add carry to dst

Branch indirect dst

Return from subroutine
Clear Rdst

Clear dst

Add carry to dst decimally
Decrement dst by 1
Decrement dst by 2
Decrement dst by 2
Increment dst by 1
Increment Rdst by 2
Increment dst by 2

Invert dst

Shift left dst arithmetically
Shift left dst logically through carry
Subtract carry from dst
Test Rdst (compare with 0)
Test dst (compare with 0)
Pop to dst

ADDCX (.B, .A) #0,dst
MOVA dst, PC

MOVA @SP+, PC

MOV #0,Rdst

MOVX (.B, .A) #0,dst
DADDX (.B, .A) #0,dst
SUBX (.B, .A) #1,dst
SUBA #2,Rdst
SUBX(.B, .A) #2,dst
ADDX (.B, .A) #1,dst
ADDA #2,Rdst

ADDX (.B, .A) #2,dst
XORX (.B, .A) #-1,dst
ADDX (.B, .A) dst,dst
ADDCX (.B, .A) dst,dst
SUBCX (.B, .A) #0,dst
CMPA #0,Rdst

CMPX (.B, .A) #0,dst
MOVX (.B, .A) @SP+,dst

16-Bit MSP430X CPU 4-53

MSP430X Extended Instructions

MSP430X Address Instructions

MSP430X address instructions are instructions that support 20-bit operands
but have restricted addressing modes. The addressing modes are restricted
to the register mode and the Immediate mode, except for the MOVA instruction
as listed in Table 4-16. Restricting the addressing modes removes the need
for the additional extension-word op-code improving code density and
execution time. Address instructions should be used any time an MSP430X
instruction is needed with the corresponding restricted addressing mode.

Table 4—-16.Address Instructions, Operate on 20-bit Registers Data

Status Bits

Mnemonic Operands Operation V N Zz C

ADDA Rsrc,Rdst Add source to destination e

#imm20, Rdst register

MOVA Rsrc,Rdst Move source to destination -

#imm20, Rdst
z16 (Rsrc) ,Rdst
EDE, Rdst
&abs20,Rdst
@Rsrc,Rdst
@Rsrc+,Rdst
Rsrc, z16 (Rdst)
Rsrc, &abs20

CMPA Rsrc,Rdst Compare source to destina- * * * *

#imm20, Rdst tion register

SUBA Rsrc,Rdst Subtract source from des- oorox

#imm20, Rdst tination register

4-54 16-Bit MSP430X CPU

MSP430X Extended Instructions

MSP430X Instruction Execution

The number of CPU clock cycles required for an MSP430X instruction
depends on the instruction format and the addressing modes used — not the
instruction itself. The number of clock cycles refers to MCLK.

MSP430X Format-Il (Single-Operand) Instruction Cycles and Lengths
Table 4-17 lists the length and the CPU cycles for all addressing modes of the
MSP430X extended single-operand instructions.

Table 4-17.MSP430X Format Il Instruction Cycles and Length

Execution Cycles/Length of Instruction (Words)

Instruction Rn @Rn @Rn+ #N X(Rn) EDE &EDE
RRAM n/1 - - - - - -
RRCM n/1 - - - - - -
RRUM n/1 - - - - - -
RLAM n/1 - - - - - -
PUSHM 2+n/1 - - - - - -
PUSHM.A 2+2n1 - - - - - -
POPM 2+n/1 - - - - - -
POPM.A 2+2n1 - - - - - -
CALLA 4/1 5/1 5/1 4/2 61/2 6/2 6/2
RRAX(.B) 1+n/2 4/2 4/2 - 5/3 5/3 5/3
RRAX.A 1+n/2 6/2 6/2 - 7/3 7/3 7/3
RRCX(.B) 1+n/2 4/2 4/2 - 5/3 5/3 5/3
RRCX.A 1+n/2 6/2 6/2 - 7/3 7/3 7/3
PUSHX(.B) 4/2 4/2 4/2 43 5t3 53 5/3
PUSHX.A 5/2 6/2 6/2 63 73 73 7/3
POPX(.B) 3/2 - - - 5/3 5/3 5/3
POPX.A 4/2 - - - 7/3 7/3 7/3

T Add one cycle when Rn = SP.

MSP430X Format-l (Double-Operand) Instruction Cycles and Lengths

Table 4-18 lists the length and CPU cycles for all addressing modes of the
MSP430X extended format-1 instructions.

16-Bit MSP430X CPU 4-55

MSP430X Extended Instructions

Table 4-18.MSP430X Format-I Instruction Cycles and Length

No. of Length of
Addressing Mode Cycles Instruction
Source Destination .B/W .A .B/.W/.A Examples
Rn Rmt 2 2 2 BITX.B R5,R8
PC 3 3 2 ADDX R9,PC
X(Rm) 5t 78 3 ANDX.A R5,4(R6)
EDE 5t 78 3 XORX R8,EDE
&EDE 5t 78 3 BITX.W R5,&EDE
@Rn Rm 3 4 2 BITX @R5,R8
PC 3 4 2 ADDX @R9,PC
X(Rm) 6t o8 3 ANDX.A @R5,4(R6)
EDE 6t o8 3 XORX @R8,EDE
&EDE 6t o8 3 BITX.B @R5,4EDE
@Rn+ Rm 3 4 2 BITX @R5+,R8
PC 4 5 2 ADDX.A @R9+,PC
X(Rm) 6t o8 3 ANDX @R5+,4(R6)
EDE 6t o8 3 XORX.B @R8+,EDE
&EDE 6t o8 3 BITX @R5+,&EDE
#N Rm 3 3 3 BITX #20,R8
PCf 4 4 3 ADDX.A #FE000h,PC
X(Rm) 6t 88 4 ANDX #1234,4(R6)
EDE 6t 88 4 XORX #A5A5n,EDE
&EDE 6t 88 4 BITX.B #12,&EDE
X(Rn) Rm 4 5 3 BITX 2(R5),R8
PCT 5 6 3 SUBX.A 2(R6),PC
X(Rm) 7% 108 4 ANDX 4(R7),4(R6)
EDE 7% 108 4 XORX.B 2(R6),EDE
&EDE 7% 108 4 BITX 8(SP),&EDE
EDE Rm 4 5 3 BITX.B EDE,R8
PCf 5 6 3 ADDX.A EDE,PC
X(Rm) 7% 108 4 ANDX EDE,4(R6)
EDE 7% 108 4 ANDX EDE, TONI
&TONI 7% 108 4 BITX EDE,&TONI
&EDE Rm 4 5 3 BITX &EDE,R8
PCf 5 6 3 ADDX.A &EDE,PC
X(Rm) 7% 108 4 ANDX.B &EDE,4(R6)
TONI 7% 108 4 XORX &EDE,TONI
&TONI 7% 108 4 BITX &EDE,&TONI
T Repeat instructions require n+1 cycles where n is the number of times the instruction is

executed.
* Reduce the cycle count by one for MOV, BIT, and CMP instructions.
§ Reduce the cycle count by two for MOV, BIT, and CMP instructions.
T Reduce the cycle count by one for MOV, ADD, and SUB instructions.

4-56 16-Bit MSP430X CPU

MSP430X Address Instruction Cycles and Lengths

MSP430X Extended Instructions

Table 4-19 lists the length and the CPU cycles for all addressing modes of the

MSP430X address instructions.

Table 4-19.Address Instruction Cycles and Length

Execution Length of
Time MCLK Instruction
Addressing Mode Cycles (Words)
CMPA CMPA
MOVA ADDA ADDA
Source Destination BRA SUBA MOVA SUBA Example
Rn Rn 1 1 1 1 CMPA R5,R8
PC 2 2 1 1 SUBA R9,PC
x(Rm) 4 - 2 - MOVA R5,4(R6)
EDE 4 - 2 - MOVA R8,EDE
&EDE 4 - 2 - MOVA R5,&EDE
@Rn Rm 3 - 1 - MOVA @R5,R8
PC 3 - 1 - MOVA @R9,PC
@Rn+ Rm 3 - 1 - MOVA @R5+,R8
PC 3 - 1 - MOVA @R9+,PC
#N Rm 2 3 2 2 CMPA #20,R8
PC 3 3 2 2 SUBA #FE000h,PC
x(Rn) Rm 4 - 2 - MOVA 2(R5),R8
PC 4 - 2 - MOVA 2(Ré),PC
EDE Rm 4 - 2 - MOVA EDE,R8
PC 4 - 2 - MOVA EDE,PC
&EDE Rm 4 - 2 - MOVA &EDE,R8
PC 4 - 2 - MOVA &EDE,PC

16-Bit MSP430X CPU 4-57

Instruction Set Description

4.6 Instruction Set Description

The instruction map of the MSP430X shows all available instructions:

000 040 080 OCO 100 140 180 1CO 200 240 280 2CO 300 340 380 3CO

[0)'¢0'¢ MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM
10xx | RRC [RRC.B| swrs] | rrRA |RRAB] sxT | [PusH|PusH.H caLL] | RETI |cALLA| [
14xx PUSHM.A, POPM.A, PUSHM.W, POPM.W

18xx Extension Word For Format | and Format Il Instructions
1Cxx

20xx JNE/JNZ

24xx JEQ/WJZ

28xx JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

4XXX MOV, MOV.B

5XXX ADD, ADD.B

BXXX ADDC, ADDC.B

7XXX SUBC, SUBC.B

8xxx SUB, SUB.B

9XXX CMP, CMP.B

AXXX DADD, DADD.B

Bxxx BIT, BIT.B

Cxxx BIC.BIC.B

Dxxx BIS, BIS.B

Exxx XOR, XOR.B

Fxxx AND, AND.B

4-58 16-Bit MSP430X CPU

Instruction Set Description

4.6.1 Extended Instruction Binary Descriptions

Detailed MSP430X instruction binary descriptions are shown below.

Instruction src or Instruction
Group data.19:16 Identifier dst
Instruction 15 12 11 8 7 4 3 0
MOVA 0/0|0|0 src 0ojo0o|0|O dst MOVA @Rsrc,Rdst
0/0|0|0 src 0/0|0|1 dst MOVA @Rsrc+,Rdst
0|{0|[0|0| &abs.19:16 |0 |0 |1 |0 dst MOVA &abs20,Rdst
&abs.15:0
0 ‘ 0 ‘ 0 ‘ 0 ‘ src ‘ 0 ‘ 0 ‘ 1 ‘ 1 ‘ dst MOVA x(Rsrc),Rdst
x.15:0 +15-bit index x
0 ‘ 0 ‘ 0 ‘ 0 ‘ src ‘ 0 ‘ 1 ‘ 1 ‘ 0 ‘ &abs.19:16 | MOVA Rsrc,&abs20
&abs.15:0
0 ‘ 0 ‘ 0 ‘ 0 ‘ src ‘ 0 ‘ 1 ‘ 1 ‘ 1 ‘ dst MOVA Rsrc,X(Rdst)
x.15:0 +15-bit index x
0 ‘ 0 ‘ 0 ‘ 0 ‘ imm.19:16 ‘ 1 ‘ 0 ‘ 0 ‘ 0 ‘ dst MOVA #imm20,Rdst
imm.15:0
CMPA 0 ‘ 0 ‘ 0 ‘ 0 ‘ imm.19:16 ‘ 1 ‘ 0 ‘ 0 ‘ 1 ‘ dst CMPA #imm20,Rdst
imm.15:0
ADDA 0 ‘ 0 ‘ 0 ‘ 0 ‘ imm.19:16 ‘ 1 ‘ 0 ‘ 1 ‘ 0 ‘ dst ADDA #imm20,Rdst
imm.15:0
SUBA 0 ‘ 0 ‘ 0 ‘ 0 ‘ imm.19:16 ‘ 1 ‘ 0 ‘ 1 ‘ 1 ‘ dst SUBA #imm20,Rdst
imm.15:0
MOVA 0/0|0|0 src 1/1/0|0 dst MOVA Rsrc,Rdst
CMPA 0o/0(0]|O src 1(1]0]|1 dst CMPA Rsrc,Rdst
ADDA 0[{0|0|O src 11110 dst ADDA Rsrc,Rdst
SUBA 0o/0(0]|O src 1(1]1]1 dst SUBA Rsrc,Rdst
Instruction Bit Inst. | Instruction
Group loc. ID Identifier dst
Instruction 15 12 11 10 9 8 7 4 3 0
RRCM.A 0/0/0|O0|nNn-1 |O0O|O0O|O|1T]0]|O dst RRCM.A #n,Rdst
RRAM.A 0/0/0|O0|nNn-1 |O|1]0|1]0]|O0 dst RRAM.A #n,Rdst
RLAM.A 0/0/0|O0|nNn-1 |1|0]|0O|1]0]|O0 dst RLAM.A #n,Rdst
RRUM.A 0/0/0|0|nNn-1 |1|1]0|1]0]|O0 dst RRUM.A #n,Rdst
RRCM.W 0/{0|0/O0| n1 |O0O|0O|O|1T]0 1 dst RRCM.W #n,Rdst
RRAM.W 0/0[{0|O0| n-1 |[O|1T]0|1|0]1 dst RRAM.W #n,Rdst
RLAM.W 0/0{0|O0| n-1 |1/0|0|1|0]1 dst RLAM.W #n,Rdst
RRUM.W 0/0[{0|O0| N1 |1/ 1]0|1|0]1 dst RRUM.W #n,Rdst

16-Bit MSP430X CPU 4-59

Instruction Set Description

Instruction Identifier ‘ ‘ dst

Instruction 15 12 1 8 7 6 5 4 3 0

RETI 0o(0(0|1|O0|O|1[1[0O(0O|O|O]|O ‘ 0 ‘ 0 ‘ 0

CALLA o|(ojoj1;0/0|1|1/0}|1]0]|0 dst CALLA Rdst
0/(0|0|1|0|O0O|1|1]0|1|0]1 dst CALLA x(Rdst)

x.15:0

0/{0(0|1|0|O0O |1 |1]0|1]|1]0 dst CALLA @Rdst
0(0|0|1 |00 |1 10111 dst CALLA @Rdst+
0[{0|0|1|0|0|1|1]|1]0|0|0| &abs.19:16 | CALLA &abs20

&abs.15:0
0‘0‘0‘1‘0‘0‘1‘1‘1‘0‘0‘1 x.19:16 CALLA EDE

x.15:0 CALLA x(PC)
0‘0‘0‘1‘0‘0‘1‘1‘1‘0‘1‘1 imm.19:16 | CALLA #imm20

imm.15:0
Reserved 0/0/0|1 (0|01 |1|1T|/0|1|0|x|x|x]|X
Reserved 0O(0|0|1 |0 |0 (1T 1|1 |1 |x|x|xX]|xX]|[Xx]|X
PUSHM.A 0/0/0|1|0[1]0|0 n-1 dst PUSHM.A #n,Rdst
PUSHM.W 0o/0/0|1|0|1]0|1 n-1 dst PUSHM.W #n,Rdst
POPM.A o/0jo0|1j0|1(10 n-1 dst—n+1 POPM.A #n,Rdst
POPM.W oO|0{0(1 |0 |11 1 n-1 dst-n+1 POPM.W #n,Rdst

4-60 16-Bit MSP430X CPU

MSP430 Instructions

4.6.2 MSP430 Instructions

The MSP430 instructions are listed and described on the following pages.

16-Bit MSP430X CPU 4-61

MSP430 Instructions

* ADC[.W]
*ADC.B
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Add carry to destination
Add carry to destination

ADC dst or ADC.W dst
ADC.B dst

dst + C —> dst

ADDC #0,dst
ADDC.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Set if dst was incremented from OFFFFh to 0000, reset otherwise
Set if dst was incremented from OFFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to

by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.

ADD.B @R13,0(R12) ; Add LSDs

ADC.B 1(R12) ; Add carry to MSD

4-62 16-Bit MSP430X CPU

ADDI[.W]
ADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Add source word to destination word
Add source byte to destination byte

ADD src,dst or ADD.W src,dst
ADD.B src,dst

src + dst — dst

The source operand is added to the destination operand. The previous content
of the destination is lost.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Ten is added to the 16-bit counter CNTR located in lower 64 K.

ADD.W #10,&CNTR ; Add 10 to 16-bit counter

A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump
to label TONI is performed on a carry.

ADD.W @R5,R6 ; Add table word to R6. R6.19:16 = 0
JC TONI ; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed if no carry occurs. The table pointer is auto-incremented by
1. R6.19:8=0

ADD.B @R5+,R6 ; Add byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Jump if no carry
; Carry occurred

16-Bit MSP430X CPU 4-63

MSP430 Instructions

ADDC[.W]
ADDC.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Add source word and carry to destination word
Add source byte and carry to destination byte

ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

src + dst + C — dst

The source operand and the carry bit C are added to the destination operand.
The previous content of the destination is lost.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Constant value 15 and the carry of the previous instruction are added to the
16-bit counter CNTR located in lower 64 K.

ADDC.W #15,&CNTR ; Add 15 + C to 16-bit CNTR

A table word pointed to by R5 (20-bit address) and the carry C are added to Ré6.
The jump to label TONI is performed on a carry. R6.19:16 =0

ADDC.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) and the carry bit C are added to
R6. The jump to label TONI is performed if no carry occurs. The table pointer is
auto-incremented by 1. R6.19:8 =0

ADDC.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
; Carry occurred

4-64 16-Bit MSP430X CPU

ANDI[.W]
AND.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Logical AND of source word with destination word
Logical AND of source byte with destination byte

AND src,dst or AND.W src,dst
AND.B src,dst

src .and. dst — dst

The source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM
located in the lower 64 K. If the result is zero, a branch is taken to label TONI.
R5.19:16 =0

MOV #AA55h,R5 ; Load 16-bit mask to R5
AND R5,&TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0

; Result > 0
or shorter:
AND #AA55h,&TOM ; TOM .and. AA55h -> TOM
JZ TONI ; Jump if result 0

A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is
incremented by 1 after the fetching of the byte. R6.19:8 =0

AND.B @R5+,R6 ; AND table byte with R6. R5 + 1

16-Bit MSP430X CPU 4-65

MSP430 Instructions

BIC[.W]
BIC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Clear bits set in source word in destination word
Clear bits set in source byte in destination byte

BIC src,dst or BIC.W src,dst
BIC.B src,dst

(.not. src) .and. dst — dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 =0

BIC #0C000h,R5 : Clear R5.19:14 bits

A table word pointed to by R5 (20-bit address) is used to clear bits in R7.
R7.19:16 =0

BIC.W @R5,R7 ; Clear bits in R7 setin @R5

A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1.

BIC.B @R5,&P10UT ; Clear I/O port P1 bits set in @R5

4-66 16-Bit MSP430X CPU

BIS[.W]
BIS.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Set bits set in source word in destination word
Set bits set in source byte in destination byte

BIS src,dst or BIS.W src,dst
BIS.B src,dst

src .or. dst — dst

The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0

BIS #A000h,R5 ; Set R5 bits

A table word pointed to by R5 (20-bit address) is used to set bits in R7.
R7.19:16 =0

BISW @R5,R7 ; Set bits in R7

A table byte pointed to by R5 (20-bit address) is used to set bits in Port1. R5 is
incremented by 1 afterwards.

BIS.B @R5+,&P10UT ; Set I/0 port P1 bits. R5 + 1

16-Bit MSP430X CPU 4-67

MSP430 Instructions

BIT[.W]
BIT.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Test bits set in source word in destination word
Test bits set in source byte in destination byte

BIT src,dst or BIT.W src,dst
BIT.B src,dst
src .and. dst

The source operand and the destination operand are logically ANDed. The
result affects only the status bits in SR.

Register Mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not
cleared!

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

Test if one — or both — of bits 15 and 14 of R5 (16-bit data) is set. Jump to label
TONI if this is the case. R5.19:16 are not affected.

BIT #CO000h,R5 ; Test R5.15:14 bits
JNZ TONI ; At least one bit is set in R5
; Both bits are reset

A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to
label TONI if at least one bit is set. R7.19:16 are not affected.

BITW @R5,R7 ; Test bits in R7
JC TONI ; At least one bit is set
; Both are reset

A table byte pointed to by R5 (20-bit address) is used to test bits in output
Port1. Jump to label TONI if no bit is set. The next table byte is addressed.

BITB @R5+,&P10UT ; Test 1/0O port P1 bits. R5 + 1
JNC TONI ; No corresponding bit is set
; At least one bit is set

4-68 16-Bit MSP430X CPU

* BR, BRANCH
Syntax
Operation
Emulation

Description

Status Bits

Example

MSP430 Instructions

Branch to destination in lower 64K address space
BR dst

dst —> PC

MOV dst,PC

An unconditional branch is taken to an address anywhere in the lower 64K
address space. All source addressing modes can be used. The branch
instruction is a word instruction.

Status bits are not affected.
Examples for all addressing modes are given.

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
: Core instruction MOV R5,PC
; Indirect R5
BR @R5 ; Branch to the address contained in the word

; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

16-Bit MSP430X CPU 4-69

MSP430 Instructions

CALL
Syntax

Operation

Description

Status Bits

Mode Bits

Examples

Call a Subroutine in lower 64 K
CALL dst

dst —» tmp 16-bit dst is evaluated and stored
SP-2—-5SP

PC —» @SP updated PC with return address to TOS
tmp— PC saved 16-bit dst to PC

A subroutine call is made from an address in the lower 64 K to a subroutine
address in the lower 64 K. All seven source addressing modes can be used.
The call instruction is a word instruction. The return is made with the RET
instruction.

Not affected
PC.19:16: Cleared (address in lower 64 K)

OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly
to address.

CALL #EXEC ; Start address EXEC
CALL #0AAO04h : Start address 0AA04h

Symbolic Mode: Call a subroutine at the 16-bit address contained in address
EXEC. EXEC is located at the address (PC + X) where X is within PC+32 K.

CALL EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 16-bit address contained in absolute
address EXEC in the lower 64 K.

CALL &EXEC ; Start address at @ EXEC

Register Mode: Call a subroutine at the 16-bit address contained in register
R5.15:0.

CALL R5 ; Start address at R5

Indirect Mode: Call a subroutine at the 16-bit address contained in the word
pointed to by register R5 (20-bit address).

CALL @R5 ; Start address at @R5

4-70 16-Bit MSP430X CPU

MSP430 Instructions

* CLR[.W] Clear destination
* CLR.B Clear destination
Syntax CLR dst or CLR.W dst
CLR.B dst
Operation 0 —> dst
Emulation MOV #0,dst
MOV.B #0,dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.
CLR TONI ; 0 —> TONI
Example Register R5 is cleared.
CLR R5
Example RAM byte TONI is cleared.
CLR.B TONI ; 0 —> TONI

16-Bit MSP430X CPU 4-71

MSP430 Instructions

* CLRC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

Clear carry bit

CLRC

0—->C

BIC #1,SR

The carry bit (C) is cleared. The clear carry instruction is a word instruction.

N: Not affected
Z: Not affected
C: Cleared

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

4-72 16-Bit MSP430X CPU

* CLRN
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

SUBR

SUBRET

MSP430 Instructions

Clear negative bit
CLRN

0—>N
or
(.NOT.src .AND. dst —> dst)

BIC #4,SR

The constant 04h is inverted (OFFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

N: Resetto 0

Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN

CALL SUBR

JN SUBRET ; If input is negative: do nothing and return
RET

16-Bit MSP430X CPU 4-73

MSP430 Instructions

* CLRZ
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Clear zero bit
CLRZ

027
or
(.NOT.src .AND. dst —> dst)

BIC #2,SR

The constant 02h is inverted (OFFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

N: Not affected
Z: Resetto 0
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.
The zero bit in the status register is cleared.
CLRz

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address
contained in the word pointed to by register R5 (20-bit address) and increment
the 16-bit address in R5 afterwards by 2. The next time the software uses R5
as a pointer, it can alter the program execution due to access to the next word
address in the table pointed to by R5.

CALL @R5+ ; Start address at @R5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit
address pointed to by register (R5 + X), e.g. a table with addresses starting at
X. The address is within the lower 64 KB. X is within +32 KB.

CALL X(R5) ; Start address at @ (R5+X). z16(R5)

4-74 16-Bit MSP430X CPU

CMP[.W]
CMP.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Compare source word and destination word
Compare source byte and destination byte

CMP src,dst or CMP.W src,dst
CMP.B src,dst

(.not.src) + 1 + dst or dst-src

The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The result
affects only the status bits in SR.

Register Mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not
cleared.

Set if result is negative (src > dst), reset if positive (src = dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if
EDE equals the constant. The address of EDE is within PC + 32 K.

CMP #01800h,EDE ; Compare word EDE with 1800h
JEQ TONI ; EDE contains 1800h
; Not equal

A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if
R7 contains a lower, signed 16-bit number. R7.19:16 is not cleared. The
address of the source operand is a 20-bit address in full memory range.

CMP.W 10(R5),R7 ; Compare two signed numbers
JL TONI ; R7 < 10(R5)
; R7 >= 10(R5)

A table byte pointed to by R5 (20-bit address) is compared to the value in
output Port1. Jump to label TONI if values are equal. The next table byte is
addressed.

CMP.B @R5+,&P10OUT ; Compare P1 bits with table. R5 + 1

JEQ TONI ; Equal contents
; Not equal

16-Bit MSP430X CPU 4-75

MSP430 Instructions

* DADCI.W]
*DADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Add carry decimally to destination
Add carry decimally to destination

DADC dst or DADC.W src,dst
DADC.B dst

dst + C —> dst (decimally)

DADD #0,dst
DADD.B #0,dst

The carry bit (C) is added decimally to the destination.

N: Setif MSB is 1

Z: Setif dstis 0, reset otherwise

C: Set if destination increments from 9999 to 0000, reset otherwise
Set if destination increments from 99 to 00, reset otherwise

V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

4-76 16-Bit MSP430X CPU

DADD[.W]
DADD.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Add source word and carry decimally to destination word
Add source byte and carry decimally to destination byte

DADD src,dst or DADD.W src,dst
DADD.B src,dst

src + dst + C — dst (decimally)

The source operand and the destination operand are treated as two (.B) or four
(.W) binary coded decimals (BCD) with positive signs. The source operand
and the carry bit C are added decimally to the destination operand. The source
operand is not affected. The previous content of the destination is lost. The
result is not defined for non-BCD numbers.

N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset
otherwise

V: Undefined
OSCOFF, CPUOFF, and GIE are not affected.

Decimal 10 is added to the 16-bit BCD counter DECCNTR.

DADD #10h,&DECCNTR ; Add 10 to 4-digit BCD counter

The eight-digit BCD number contained in 16-bit RAM addresses BCD and
BCD+2 is added decimally to an eight-digit BCD number contained in R4 and
R5 (BCD+2 and R5 contain the MSDs). The carry C is added, and cleared.

CLRC ; Clear carry
DADD.W &BCD,R4 ; Add LSDs. R4.19:16 =0
DADD.W &BCD+2,R5 ; Add MSDs with carry. R5.19:16 = 0
JC OVERFLOW ; Result >9999,9999: go to error
routine
; Result ok

The two-digit BCD number contained in word BCD (16-bit address) is added
decimally to a two-digit BCD number contained in R4. The carry C is added,
also. R4.19:8 =0

CLRC ; Clear carry
DADD.B &BCD,R4 ; Add BCD to R4 decimally.
R4: 0,00ddh

16-Bit MSP430X CPU 4-77

MSP430 Instructions

* DEC[.W]
* DEC.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Decrement destination
Decrement destination

DEC dst or DEC.W dst
DEC.B dst
dst — 1 —> dst

SUB #1,dst
SUB.B #1,dst

The destination operand is decremented by one. The original contents are
lost.

Set if result is negative, reset if positive

Set if dst contained 1, reset otherwise

Reset if dst contained 0, set otherwise

Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
; TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE

; to EDE+OFEh

L$1

MOV #EDE,R6

MOV #255R10

MOV.B @R6+,TONI-EDE-1(R6)
DEC R10

INZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 4-36.

Figure 4-36. Decrement Overlap

EDE
4 ——>
TONI
EDE+254
TONI+254

4-78 16-Bit MSP430X CPU

* DECD[.W]
* DECD.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

MSP430 Instructions

Double-decrement destination
Double-decrement destination

DECD dst or DECD.W dst
DECD.B dst
dst — 2 —> dst

SUB #2,dst
SUB.B #2 dst

The destination operand is decremented by two. The original contents are lost.

Set if result is negative, reset if positive

Set if dst contained 2, reset otherwise

Reset if dst contained 0 or 1, set otherwise

Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location

; starting with TONI

; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+0FEh

Example

MOV #EDE,R6
MOV #510,R10
L$1 MOV @R6+,TONI-EDE-2(R6)
DECD R10
INZ L$1

Memory at location LEO is decremented by two.
DECD.B LEO ; Decrement MEM(LEO)
Decrement status byte STATUS by two.

DECD.B STATUS

16-Bit MSP430X CPU 4-79

MSP430 Instructions

* DINT Disable (general) interrupts
Syntax DINT
Operation 0 — GIE

or

(OFFF7h .AND. SR — SR / .NOT.src .AND. dst —> dst)
Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the status register is cleared to allow

a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP

MOV COUNTHI,R5 ; Copy counter

MOV COUNTLO,R6

EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

4-80 16-Bit MSP430X CPU

* EINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

MSP430 Instructions

Enable (general) interrupts
EINT

1 - GIE
or
(0008h .OR. SR —> SR / .src .OR. dst —> dst)

BIS #8,SR

All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status bits are not affected.
GIE is set. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.

MaskOK

PUSH.B &P1IN

BIC.B @SP,&P1IFG ; Reset only accepted flags

EINT ; Preset port 1 interrupt flags stored on stack
; other interrupts are allowed

BIT #Mask, @ SP

JEQ MaskOK ; Flags are present identically to mask: jump

BIC #Mask,@SP

INCD SP ; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

16-Bit MSP430X CPU 4-81

MSP430 Instructions

* INC[.W] Increment destination
*INC.B Increment destination
Syntax INC dst or INC.W dst
INC.B dst
Operation dst + 1 —> dst
Emulation ADD #1,dst
Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

4-82 16-Bit MSP430X CPU

* INCD[.W]
*INCD.B

Syntax

Operation

Emulation
Emulation

Example

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Double-increment destination
Double-increment destination

INCD dst or INCD.W dst
INCD.B dst
dst + 2 —> dst

ADD #2,dst
ADD.B #2,dst

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Set if dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The item on the top of the stack (TOS) is removed without using a register.

PUSH R5 ; R5 is the result of a calculation, which is stored
; in the system stack

INCD SP ; Remove TOS by double-increment from stack
; Do not use INCD.B, SP is a word-aligned
; register

RET

The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

16-Bit MSP430X CPU 4-83

MSP430 Instructions

* INV[.W] Invert destination
*INV.B Invert destination
Syntax INV dst
INV.B dst
Operation .NOT.dst —> dst
Emulation XOR #OFFFFh,dst
Emulation XOR.B #0FFh,dst
Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Content of R5 is negated (twos complement).
MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = OFF51h
INC R5 ; R5 is now negated, R5 = OFF52h
Example Content of memory byte LEO is negated.

MOV.B #0AEN,LEO ; MEM(LEO) = 0AEh
INV.B LEO : Invert LEO, MEM(LEO) = 051h
INC.B LEO . MEM(LEO) is negated, MEM(LEO) = 052h

4-84 16-Bit MSP430X CPU

JC
JHS

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

MSP430 Instructions

Jump if carry
Jump if Higher or Same (unsigned)

JC label
JHS label

fC=1: PC+ (2 x Offset) -» PC
If C=0: execute the following instruction

The carry bit C in the status register is tested. If it is set, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If C is reset, the
instruction after the jump is executed.

JC is used for the test of the carry bit C

JHS is used for the comparison of unsigned numbers
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

The state of the port 1 pin P1IN.1 bit defines the program flow.

BIT.B #2,&P1IN ; Port 1, bit 1 set? Bit-> C
JC Labell ; Yes, proceed at Labeld
; No, continue

If R5 > R6 (unsigned) the program continues at Label2

CMP R6,R5 ;Is R5 > R67? Info to C
JHS Label2 : Yes, C=1
: No, R5 < R6. Continue

If R5 > 12345h (unsigned operands) the program continues at Label2
CMPA #12345h,R5 ;Is R5>12345h? Infoto C

JHS Label2 : Yes, 12344h < R5 <= F,FFFFh. C =1
: No, R5 < 12345h. Continue

16-Bit MSP430X CPU 4-85

MSP430 Instructions

JEQ,JZ

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

Jump if equal,Jump if zero
JZ label
JEQ label

IfZ=1: PC + (2 x Offset) » PC
If Z=0: execute following instruction

The Zero bit Z in the status register is tested. If it is set, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If Z is reset, the
instruction after the jump is executed.

JZ is used for the test of the Zero bit Z

JEQ is used for the comparison of operands
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

The state of the P2IN.O bit defines the program flow

BIT.B #1,&P2IN ; Port 2, bit O reset?
JZ Labell ; Yes, proceed at Labeld
; No, set, continue

If R5 = 15000h (20-bit data) the program continues at Label2

CMPA #15000n,R5 ; Is R5 = 15000h? Info to SR
JEQ Label2 ; Yes, R5 = 15000h. Z =1
: No, R5 = 15000h. Continue

R7 (20-bit counter) is incremented. If its content is zero, the program continues
at Label4.

ADDA #1,R7 ; Increment R7
JZ Label4 ; Zero reached: Go to Label4
: R7 # 0. Continue here.

4-86 16-Bit MSP430X CPU

JGE
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

MSP430 Instructions

Jump if Greater or Equal (signed)
JGE label

If (N .xor.V)=0: PC + (2 x Offset) - PC
If (N .xor. V) = 1: execute following instruction

The negative bit N and the overflow bit V in the status register are tested. If both
bits are set or both are reset, the signed 10-bit word offset contained in the
instruction is multiplied by two, sign extended, and added to the 20-bit program
counter PC. This means a jump in the range -511 to +512 words relative to the
PC in full Memory range. If only one bit is set, the instruction after the jump is
executed.

JGE is used for the comparison of signed operands: also for incorrect results
due to overflow, the decision made by the JGE instruction is correct.

Note: JGE emulates the non-implemented JP (jump if positive) instruction if
used after the instructions AND, BIT, RRA, SXTX and TST. These instructions
clear the V-bit.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

If byte EDE (lower 64 K) contains positive data, go to Label1. Software can run
in the full memory range.

TST.B &EDE ; Is EDE positive? V <- 0
JGE Labell ; Yes, JGE emulates JP
; No, 80h <= EDE <= FFh
If the content of R6 is greater than or equal to the memory pointed to by R7, the

program continues a Label5. Signed data. Data and program in full memory
range.

CMP @R7,R6 ; Is R6 > @R77?
JGE Label5 ; Yes, go to Label5
; No, continue here.

If R5 > 12345h (signed operands) the program continues at Label2. Program
in full memory range.

CMPA #12345h,R5 ; Is R5 > 12345h?

JGE Label2 ; Yes, 12344h < R5 <= 7FFFFh.
; No, 80000h <= R5 < 12345h.

16-Bit MSP430X CPU 4-87

MSP430 Instructions

JL
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

Jump if Less (signed)
JL label

If (N .xor.V)=1: PC + (2 x Offset) - PC
If (N .xor. V) =0: execute following instruction

The negative bit N and the overflow bit V in the status register are tested. If only
one is set, the signed 10-bit word offset contained in the instruction is multiplied
by two, sign extended, and added to the 20-bit program counter PC. This
means a jump in the range -511 to +512 words relative to the PC in full memory
range. If both bits N and V are set or both are reset, the instruction after the
jump is executed.

JL is used for the comparison of signed operands: also for incorrect results due
to overflow, the decision made by the JL instruction is correct.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

If byte EDE contains a smaller, signed operand than byte TONI, continue at
Labell. The address EDE is within PC £+ 32 K.

CMP.B &TONLEDE ;Is EDE < TONI
JL Label1 ; Yes
; No, TONI <= EDE
If the signed content of R6 is less than the memory pointed to by R7 (20-bit

address) the program continues at Label Label5. Data and program in full
memory range.

CMP @R7,R6 ; Is R6 < @R7?
JL Label5 ; Yes, go to Label5
; No, continue here.

If R5 < 12345h (signed operands) the program continues at Label2. Data and
program in full memory range.

CMPA #12345h,R5 ; Is R5 < 12345h?
JL Label2 ; Yes, 80000h =< R5 < 12345h.
; No, 12344h < R5 =< 7FFFFh.

4-88 16-Bit MSP430X CPU

JMP
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Example

MSP430 Instructions

Jump unconditionally
JMP label

PC + (2 x Offset) - PC

The signed 10-bit word offset contained in the instruction is multiplied by two,
sign extended, and added to the 20-bit program counter PC. This means an
unconditional jump in the range -511 to +512 words relative to the PC in the full
memory. The JMP instruction may be used as a BR or BRA instruction within its
limited range relative to the program counter.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data
in lower 64 K, program in full memory range.

MOV.B #10,&STATUS ; Set STATUS to 10
JMP MAINLOOP ; Go to main loop
The interrupt vector TAIV of Timer_AS is read and used for the program flow.

Program in full memory range, but interrupt handlers always starts in lower
64K.

ADD &TAIV,PC ; Add Timer_A interrupt vector to PC
RETI ; No Timer_A interrupt pending

JMP IHCCR1 ; Timer block 1 caused interrupt
JMP IHCCR2 ; Timer block 2 caused interrupt
RETI ; No legal interrupt, return

16-Bit MSP430X CPU 4-89

MSP430 Instructions

JN
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

Jump if Negative
JN label

fN=1: PC + (2 x Offset) - PC
If N =0: execute following instruction

The negative bit N in the status register is tested. If it is set, the signed 10-bit
word offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If N is reset, the
instruction after the jump is executed.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

The byte COUNT is tested. If it is negative, program execution continues at
LabelO. Data in lower 64 K, program in full memory range.

TST.B &COUNT ; Is byte COUNT negative?
JN Label0 ; Yes, proceed at Label0
; COUNT >0

R6 is subtracted from R5. If the result is negative, program continues at
Label2. Program in full memory range.

SuB R6,R5 :R5-R6->R5
JN Label2 ; R5 is negative: R6 > R5 (N = 1)
: R5 > 0. Continue here.

R7 (20-bit counter) is decremented. If its content is below zero, the program
continues at Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
JN Label4 : R7 < 0: Go to Label4
: R7 > 0. Continue here.

4-90 16-Bit MSP430X CPU

JNC
JLO
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

MSP430 Instructions

Jump if No carry
Jump if lower (unsigned)

JNC label
JLO label

If C=0: PC + (2 x Offset) - PC
If C=1: execute following instruction

The carry bit C in the status register is tested. If it is reset, the signed 10-bit
word offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If C is set, the
instruction after the jump is executed.

JNC is used for the test of the carry bit C

JLO is used for the comparison of unsigned numbers .
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

If byte EDE < 15 the program continues at Label2. Unsigned data. Data in
lower 64 K, program in full memory range.

CMP.B #15,&EDE : Is EDE < 15? Infoto C
JLO Label2 :Yes, EDE<15.C =0
: No, EDE > 15. Continue

The word TONI is added to R5. If no carry occurs, continue at Label0. The
address of TONI is within PC + 32 K.

ADD TONI,R5 ; TONI + R5 -> R5. Carry -> C
JNC Label0 ; No carry
; Carry = 1: continue here

16-Bit MSP430X CPU 4-91

MSP430 Instructions

JNZ
JNE
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

Jump if Not Zero
Jump if Not Equal

JNZ label
JNE label

If Z=0: PC + (2 x Offset) - PC
IfZ=1: execute following instruction

The zero bit Z in the status register is tested. If it is reset, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If Z is set, the
instruction after the jump is executed.

JNZ is used for the test of the Zero bit Z

JNE is used for the comparison of operands
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

The byte STATUS is tested. If it is not zero, the program continues at Label3.
The address of STATUS is within PC £ 32 K.

TST.B STATUS ; Is STATUS = 0?
JNZ Label3 ; No, proceed at Label3
; Yes, continue here

If word EDE # 1500 the program continues at Label2. Data in lower 64 K,
program in full memory range.

CMP #1500,&EDE ; Is EDE = 15007 Info to SR
JNE Label2 ; No, EDE = 1500.
; Yes, R5 = 1500. Continue

R7 (20-bit counter) is decremented. If its content is not zero, the program
continues at Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
JNZ Label4 ; Zero not reached: Go to Label4
; Yes, R7 = 0. Continue here.

4-92 16-Bit MSP430X CPU

MOV[.W]
MOV.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Loop

Example

Loop

MSP430 Instructions

Move source word to destination word
Move source byte to destination byte

MOV src,dst or MOV.W src,dst
MOV.B src,dst

src — dst

The source operand is copied to the destination. The source operand is not
affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K).

MOV #01800n,&EDE ; Move 1800h to EDE

The contents of table EDE (word data, 16-bit addresses) are copied to table
TOM. The length of the tables is 030h words. Both tables reside in the lower
64K.

MOV #EDE,R10 ; Prepare pointer (16-bit address)
MOV @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
R10+2
CMP #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
; Copy completed

The contents of table EDE (byte data, 16-bit addresses) are copied to table
TOM. The length of the tables is 020h bytes. Both tables may reside in full
memory range, but must be within R10 £32 K.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter
MOV.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1
DEC R9 ; Decrement counter
JNZ Loop ; Not yet done
; Copy completed

16-Bit MSP430X CPU 4-93

MSP430 Instructions

*NOP No operation

Syntax NOP

Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of

instructions during the software check or for defined waiting times.

Status Bits Status bits are not affected.

4-94 16-Bit MSP430X CPU

* POP[.W]
* POP.B
Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

MSP430 Instructions

Pop word from stack to destination
Pop byte from stack to destination

POP dst

POP.B dst

@SP ->temp

SP+2 —>SP

temp —> dst

MOV @SP+,dst or MOV.W @SP+,dst
MOV.B @SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.
The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

The contents of RAM byte LEO is restored from the stack.
POP.B LEO ; The low byte of the stack is moved to LEO.
The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 =203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack
POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

16-Bit MSP430X CPU 4-95

MSP430 Instructions

PUSH[.W]
PUSH.B
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Save a word on the stack
Save a byte on the stack

PUSH dst or PUSH.W dst
PUSH.B dst

SP-2 —» SP
dst — @SP

The 20-bit stack pointer SP is decremented by two. The operand is then copied
to the RAM word addressed by the SP. A pushed byte is stored in the low byte,
the high byte is not affected.

Not affected.
OSCOFF, CPUOFF, and GIE are not affected.

Save the two 16-bit registers R9 and R10 on the stack.

PUSH R9 : Save R9 and R10 XXXXh
PUSH R10 :YYYYh

Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI
are within PC + 32 K.

PUSH.B EDE : Save EDE xxXXh
PUSH.B TONI : Save TONI xxYYh

4-96 16-Bit MSP430X CPU

RET
Syntax

Operation

Description

Status Bits

Mode Bits

Example

SUBR

MSP430 Instructions

Return from subroutine
RET

@SP — PC.15:.0 Saved PC to PC.15:0. PC.19:16 <0
SP+2 —» SP

The 16-bit return address (lower 64 K), pushed onto the stack by a CALL
instruction is restored to the PC. The program continues at the address
following the subroutine call. The four MSBs of the program counter PC.19:16
are cleared.

Not affected
PC.19:16: Cleared

OSCOFF, CPUOFF, and GIE are not affected.

Call a subroutine SUBR in the lower 64 K and return to the address in the lower
64K after the CALL

CALL #SUBR ; Call subroutine starting at SUBR
; Return by RET to here
PUSH R14 ; Save R14 (16 bit data)
; Subroutine code
POP R14 ; Restore R14
RET ; Return to lower 64 K

Figure 4-37. The Stack After a RET Instruction

ltemn SP—» Itemn
SP—» PCReturn

Stack before RET Stack after RET
instruction instruction

16-Bit MSP430X CPU 4-97

MSP430 Instructions

RETI
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Return from interrupt
RETI

@SP — SR.15:0 Restore saved status register SR with PC.19:16
SP+2 —» SP

@SP — PC.15:0 Restore saved program counter PC.15:0

SP +2 —» SP House keeping

The status register is restored to the value at the beginning of the interrupt
service routine. This includes the four MSBs of the program counter PC.19:16.
The stack pointer is incremented by two afterwards.

The 20-bit PC is restored from PC.19:16 (from same stack location as the
status bits) and PC.15:0. The 20-bit program counter is restored to the value
at the beginning of the interrupt service routine. The program continues at the
address following the last executed instruction when the interrupt was granted.
The stack pointer is incremented by two afterwards.

N: restored from stack
Z: restored from stack
C: restored from stack
V: restored from stack

OSCOFF, CPUOFF, and GIE are restored from stack

Interrupt handler in the lower 64 K. A 20-bit return address is stored on the
stack.

INTRPT PUSHM.A #2,R14 ; Save R14 and R13 (20-bit data)

; Interrupt handler code
POPM.A #2,R14 ; Restore R13 and R14 (20-bit data)
RETI ; Return to 20-bit address in full memory range

4-98 16-Bit MSP430X CPU

MSP430 Instructions

* RLA[.W] Rotate left arithmetically

*RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <- MSB <- MSB-1 LSB+1 <-LSB<-0

Emulation ADD dst,dst

ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-38.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst > 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 4-38. Destination Operand—Arithmetic Shift Left

Word 15 0
___________________ PR
Byte 7 0

An overflow occurs if dst > 040h and dst < 0COh before the operation is
performed: the result has changed sign.

Status Bits Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C0O00h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (x 2)
Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

Note: RLA Substitution
The assembler does not recognize the instruction:

RLA @R5+, RLA.B @R5+, or RLA(.B) @R5
It must be substituted by:

ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) or ADD(.B) @R5

16-Bit MSP430X CPU 4-99

MSP430 Instructions

* RLC[.W]
* RLC.B

Syntax

Operation
Emulation

Description

Rotate left through carry
Rotate left through carry

RLC dst or RLC.W dst
RLC.B dst

C <—- MSB <- MSB-1 LSB+1<-LSB<-C
ADDC dst,dst

The destination operand is shifted left one position as shown in Figure 4-39.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry

bit (C).

Figure 4-39. Destination Operand—Carry Left Shift

Status Bits

Mode Bits

Example

Example

Example

Word 15 0
———————————————————
Byte 7 0

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 04000h < dst < 0C0O00h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
R5 is shifted left one position.

RLC R5 ;(R5x2)+C ->R5

The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN
RLC R5

; Information —> Carry
; Carry=P0in.1 —> LSB of R5

The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C —> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:
RLC @R5+, RLC.B @R5+,

It must be substituted by:

ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) or ADDC(.B) @R5

or RLC(.B) @R5

4-100 16-Bit MSP430X CPU

RRA[W]
RRA.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Rotate Right Arithmetically destination word
Rotate Right Arithmetically destination byte

RRA.B

dst or

RRA.W dst

MSB —» MSB — MSB-1 .

—...LSB+1 —= LSB - C

The destination operand is shifted right arithmetically by one bit position as
shown inFigure 4-40. The MSB retains its value (sign). RRA operates equal to
a signed division by 2. The MSB is retained and shifted into the MSB-1. The
LSB+1 is shifted into the LSB. The previous LSB is shifted into the carry bit C.

N:
Z:
C:
V:

Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Set if result is zero, reset otherwise

Loaded from the LSB

Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 16-bit number in R5 is shifted arithmetically right one position.

RRA

R5

; R5/2 -> R5

The signed RAM byte EDE is shifted arithmetically right one position.

RRA.B

EDE

; EDE/2 -> EDE

Figure 4-40. Rotate Right Arithmetically RRA.B and RRA.W

19 15 7 0

0 0 0o 0JO 0 OO O 0 O or MSB |[—*| LSB
=]

19 15 0
0 0 0 o MSB — | LSB —‘

16-Bit MSP430X CPU 4-101

MSP430 Instructions

RRCL.W]
RRC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Rotate Right through carry destination word
Rotate Right through carry destination byte

RRC dst or RRC.W dst
RRC.B dst

C—>MSB - MSB-1 - ...LSB+1 - LSB > C

The destination operand is shifted right by one bit position as shown in
Figure 4-41. The carry bit C is shifted into the MSB and the LSB is shifted into
the carry bit C.

N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

RAM word EDE is shifted right one bit position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC EDE ; EDE = EDE » 1 + 8000h

Figure 4-41. Rotate Right through Carry RRC.B and RRC.W

19 15 7 0
0 0 0 0JO O OO O O O O|JMSB|————*| LSB
~]
19 15 0

0 0 O 0] MSB %LSB—‘
y 3

4-102 16-Bit MSP430X CPU

* SBC[.W]
*SBC.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SBC dst or SBC.W dst
SBC.B dst

dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBC #0,dst
SUBC.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

16-Bit MSP430X CPU 4-103

MSP430 Instructions
*SETC

Syntax

Operation
Emulation
Description

Status Bits

Mode Bits

Example

DSUB

Set carry bit
SETC

1->C

BIS #1,SR

The carry bit (C) is set.

N: Not affected
Z: Not affected
C: Set

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

ADD #06666h,R5 ; Move content R5 from 0-9 to 6-0Fh
; R5 = 03987h + 06666h = 09FEDNh
INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h
SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
;R6=R6+R5+1
; R6 = 0150h

4-104 16-Bit MSP430X CPU

MSP430 Instructions

* SETN Set negative bit

Syntax SETN

Operation 1-—>N

Emulation BIS #4,SR
Description The negative bit (N) is set.
Status Bits N: Set

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

16-Bit MSP430X CPU 4-105

MSP430 Instructions

* SETZ
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Set zero bit
SETZ

1-—>Z

BIS #2,SR

The zero bit (Z) is set.

N: Not affected
Z: Set

C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

4-106 16-Bit MSP430X CPU

SUBL.W]
SUB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Subtract source word from destination word
Subtract source byte from destination byte

SUB src,dst or SUB.W src,dst
SUB.B src,dst

(.not.src) + 1 + dst - dst or dst - src — dst

The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The source
operand is not affected, the result is written to the destination operand.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 16-bit constant 7654h is subtracted from RAM word EDE.

SUB #7654h,&EDE ; Subtract 7654h from EDE

A table word pointed to by R5 (20-bit address) is subtracted from R7.
Afterwards, if R7 contains zero, jump to label TONI. R5 is then
auto-incremented by 2. R7.19:16 = 0.

SUB @R5+,R7 ; Subtract table number from R7. R5 + 2
JZ TONI ; R7 = @R5 (before subtraction)
; R7 <> @R5 (before subtraction)

Byte CNT is subtracted from byte R12 points to. The address of CNT is within
PC + 32 K. The address R12 points to is in full memory range.

SUB.B CNT,0(R12) ; Subtract CNT from @R12

16-Bit MSP430X CPU 4-107

MSP430 Instructions

SUBCL.W]
SUBC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Subtract source word with carry from destination word
Subtract source byte with carry from destination byte

SUBC src,dst or SUBC.W src,dst
SUBC.B src,dst

(.not.src) + C +dst > dst or dst-(src-1)+ C — dst

The source operand is subtracted from the destination operand. This is done
by adding the 1’s complement of the source + carry to the destination. The
source operand is not affected, the result is written to the destination operand.
Used for 32, 48, and 64-bit operands.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 16-bit constant 7654h is subtracted from R5 with the carry from the previous
instruction. R5.19:16 = 0

SUBC.W #7654h,R5 : Subtract 7654h + C from R5

A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from
a 48-bit counter in RAM, pointed to by R7. R5 points to the next 48-bit number
afterwards. The address R7 points to is in full memory range.

SUB @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBC @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBC @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Byte CNT is subtracted from the byte, R12 points to. The carry of the previous
instruction is used. The address of CNT is in lower 64 K.

SUBC.B &CNT,0(R12) ; Subtract byte CNT from @R12

4-108 16-Bit MSP430X CPU

SWPB
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Swap bytes
SWPB

dst

dst.15:8 < dst.7:0

MSP430 Instructions

The high and the low byte of the operand are exchanged. PC.19:16 bits are
cleared in register mode.

Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Exchange the bytes of RAM word EDE (lower 64 K).

Figure 4-42. Swap Bytes in Memory

Figure 4-43. Swap Bytes in a Register

MOV #1234h,&EDE ; 1284h -> EDE
SWPB &EDE ; 3412h -> EDE
Before SWPB
15 8 7 0
High Byte Low Byte
After SWPB
15 8 7 0
Low Byte High Byte
Before SWPB
19 16 15 8 7 0
X High Byte Low Byte
After SWPB
19 16 15 8 7 0
0 .. 0 Low Byte High Byte
16-Bit MSP430X CPU 4-109

MSP430 Instructions

SXT
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Extend sign
SXT dst

dst.7 — dst.15:8, dst.7 — dst.19:8 (Register Mode)

Register Mode: the sign of the low byte of the operand is extended into the bits
Rdst.19:8

Rdst.7 = 0: Rdst.19:8 = 000h afterwards.
Rdst.7 = 1: Rdst.19:8 = FFFh afterwards.

Other Modes: the sign of the low byte of the operand is extended into the high
byte.

dst.7 = 0: high byte = 00h afterwards.

dst.7 = 1: high byte = FFh afterwards.

N: Set if result is negative, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the
16-bit signed data in R7.

MOV.B &EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADD R5,R7 ; Add signed 16-bit values

The signed 8-bit data in EDE (PC 132 K) is sign extended and added to the
20-bit data in R7.

MOV.B EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADDA R5,R7 ; Add signed 20-bit values

4-110 16-Bit MSP430X CPU

* TST[.W]
*TST.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Test destination
Test destination

TST dst or TST.W dst
TST.B dst

dst + OFFFFh + 1
dst + OFFh + 1

CMP #0,dst
CMP.B #0,dst

The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C: Set

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

R7 is tested. If it is negative, continue at R7NEG,; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7

JN R7NEG ; R7 is negative

JZ R7ZERO ; R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ... ; R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7

JN R7NEG ; Low byte of R7 is negative

Jz R7ZERO ; Low byte of R7 is zero
R7POS ... ; Low byte of R7 is positive but not zero
R7NEG ... ; Low byte of R7 is negative
R7ZERO ... ; Low byte of R7 is zero

16-Bit MSP430X CPU 4-111

MSP430 Instructions

XOR[.W]
XOR.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Exclusive OR source word with destination word
Exclusive OR source byte with destination byte

XOR dst or XOR.W dst
XOR.B dst

src .xor. dst — dst

The source and destination operands are exclusively ORed. The result is
placed into the destination. The source operand is not affected. The previous
content of the destination is lost.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not. Z)
V: Set if both operands are negative before execution, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

Toggle bits in word CNTR (16-bit data) with information (bit = 1) in
address-word TONI. Both operands are located in lower 64 K.

XOR &TONI,&CNTR ; Toggle bits in CNTR

A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.
R6.19:16 = 0.

XOR @R5,R6 ; Toggle bits in R6

Reset to zero those bits in the low byte of R7 that are different from the bits in
byte EDE. R7.19:8 = 0. The address of EDE is within PC + 32 K.

XOR.B EDE,R7 ; Set different bits to 1 in R7.
INV.B R7 ; Invert low byte of R7, high byte is Oh

4-112 16-Bit MSP430X CPU

Extended Instructions

4.6.3 Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its
20-bit address space. Some MSP430X instructions require an additional word
of op-code called the extension word. All addresses, indexes, and immediate
numbers have 20-bit values, when preceded by the extension word. The
MSP430X extended instructions are listed and described in the following
pages. For MSP430X instructions that do not require the extension word, it is
noted in the instruction description.

16-Bit MSP430X CPU 4-113

Extended Instructions

* ADCX.A
* ADCX.[W]
* ADCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

4-114

Add carry to destination address-word
Add carry to destination word
Add carry to destination byte

ADCX.A dst
ADCX dst or
ADCX.B dst

ADCX.W dst

dst + C —> dst

ADDCX.A #0,dst
ADDCX #0,dst
ADDCX.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
The 40-bit counter, pointed to by R12 and R13, is incremented.

INCX.A
ADCX.A

@R12
@R13

; Increment lower 20 bits
; Add carry to upper 20 bits

16-Bit MSP430X CPU

ADDX.A
ADDX[.W]
ADDX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Add source address-word to destination address-word
Add source word to destination word
Add source byte to destination byte

ADDX.A src,dst
ADDX src,dst or ADDX.W src,dst
ADDX.B src,dst

src + dst — dst

The source operand is added to the destination operand. The previous
contents of the destination are lost. Both operands can be located in the full
address space.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs)
and CNTR+2 (MSBs).

ADDX.A #10,CNTR ; Add 10 to 20-bit pointer

A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump
to label TONI is performed on a carry.

ADDX.W @R5,R6
JC TONI

; Add table word to R6

; Jump if carry

; No carry

A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label

TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1.

ADDX.B @R5+,R6
JNC TONI

; Add table byte to R6. R5 + 1. R6: 000xxh
; Jump if no carry

; Carry occurred
Note: Use ADDA for the following two cases for better code density and
execution.

ADDX.A Rsrc,Rdst or
ADDX.A #imm20,Rdst

16-Bit MSP430X CPU 4-115

Extended Instructions

ADDCX.A
ADDCX[.W]
ADDCX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Add source address-word and carry to destination address-word
Add source word and carry to destination word
Add source byte and carry to destination byte

ADDCX.A src,dst
ADDCX src,dst or ADDCX.W src,dst
ADDCX.B src,dst

src + dst + C — dst

The source operand and the carry bit C are added to the destination operand.
The previous contents of the destination are lost. Both operands may be
located in the full address space.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

Constant 15 and the carry of the previous instruction are added to the 20-bit
counter CNTR located in two words.

ADDCX.A

A table word pointed to by R5 (20-bit address) and the carry C are added to Ré6.
The jump to label TONI is performed on a carry.

#15,&CNTR ; Add 15 + C to 20-bit CNTR

ADDCX.W @R5,R6
JC TONI

; Add table word + C to R6

; Jump if carry

; No carry

A table byte pointed to by R5 (20-bit address) and the carry bit C are added to

R6. The jump to label TONI is performed if no carry occurs. The table pointer is
auto-incremented by 1.

ADDCX.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
; Carry occurred
4-116 16-Bit MSP430X CPU

ANDX.A
ANDX[.W]
ANDX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Extended Instructions

Logical AND of source address-word with destination address-word
Logical AND of source word with destination word
Logical AND of source byte with destination byte

ANDX.A src,dst
ANDX src,dst or ANDX.W src,dst
ANDX.B src,dst

src .and. dst — dst

The source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected. Both
operands may be located in the full address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the
address-word TOM located in two words. If the result is zero, a branch is taken
to label TONIL.

MOVA #AAA55h,R5 ; Load 20-bit mask to R5
ANDX.A R5,TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0

; Result > 0
or shorter:
ANDX.A #AAA55h, TOM ; TOM .and. AAA55h -> TOM
JZ TONI ; Jump if result 0

A table byte pointed to by R5 (20-bit address) is logically ANDed with R6.
R6.19:8 = 0. The table pointer is auto-incremented by 1.

ANDX.B @R5+,R6 ; AND table byte with R6. R5 + 1

16-Bit MSP430X CPU 4-117

Extended Instructions

BICX.A
BICX[.W]
BICX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Clear bits set in source address-word in destination address-word
Clear bits set in source word in destination word
Clear bits set in source byte in destination byte

BICX.A src,dst
BICX src,dst or BICX.W src,dst
BICX.B src,dst

(.not. src) .and. dst — dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected. Both operands may be located in the full address space.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The bits 19:15 of R5 (20-bit data) are cleared.

BICX.A #0F8000h,R5 ; Clear R5.19:15 bits

A table word pointed to by R5 (20-bit address) is used to clear bits in R7.
R7.19:16 =0

BICX.W @R5,R7 ; Clear bits in R7

A table byte pointed to by R5 (20-bit address) is used to clear bits in output
Port1.

BICX.B @R5,&P10UT ; Clear I/O port P1 bits

4-118 16-Bit MSP430X CPU

BISX.A
BISX[.W]
BISX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Set bits set in source address-word in destination address-word
Set bits set in source word in destination word
Set bits set in source byte in destination byte

BISX.A src,dst
BISX src,dst or BISX.W src,dst
BISX.B src,dst

src .or. dst — dst

The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected. Both
operands may be located in the full address space.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Bits 16 and 15 of R5 (20-bit data) are set to one.

BISX.A #018000h,R5 ; Set R5.16:15 bits

A table word pointed to by R5 (20-bit address) is used to set bits in R7.

BISX.W @R5,R7 : Set bits in R7

A table byte pointed to by R5 (20-bit address) is used to set bits in output Port1.

BISX.B @R5,&P10UT ; Set I/O port P1 bits

16-Bit MSP430X CPU 4-119

Extended Instructions

BITX.A
BITX[.W]
BITX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

4-120

Test bits set in source address-word in destination address-word
Test bits set in source word in destination word
Test bits set in source byte in destination byte

BITX.A src,dst

BITX src,dst or BITX.W src,dst
BITX.B src,dst

src .and. dst

The source operand and the destination operand are logically ANDed. The
result affects only the status bits. Both operands may be located in the full
address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.

BITX.A #018000h,R5
JNZ TONI

; Test R5.16:15 bits
; At least one bit is set

; Both are reset

A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to
label TONI if at least one bit is set.

BITX.W @R5,R7
JC TONI

: Test bits in R7: C = .not.Z
; At least one is set
; Both are reset

A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1.
Jump to label TONI if no bit is set. The next table byte is addressed.

BITX.B @R5+,&P1IN
JNC TONI

; Test input P1 bits. R5 + 1
; No corresponding input bit is set
; At least one bit is set

16-Bit MSP430X CPU

Extended Instructions

* CLRX.A Clear destination address-word
* CLRX.[W] Clear destination word
* CLRX.B Clear destination byte
Syntax CLRX.A dst
CLRX dst or CLRXW dst
CLRX.B dst
Operation 0 —> dst
Emulation MOVX.A #0,dst
MOVX #0,dst
MOVX.B #0,dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM address-word TONI is cleared.
CLRX.A TONI ; 0 —> TONI

16-Bit MSP430X CPU 4-121

Extended Instructions

CMPX.A
CMPX[.W]
CMPX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

4-122

Compare source address-word and destination address-word
Compare source word and destination word
Compare source byte and destination byte

CMPX.A src,dst
CMPX src,dst or CMPX.W src,dst
CMPX.B src,dst

(.not. src) + 1 + dst or dst - src

The source operand is subtracted from the destination operand by adding the
1’s complement of the source + 1 to the destination. The result affects only the
status bits. Both operands may be located in the full address space.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive
destination operand delivers a negative result, or if the subtraction of
a positive source operand from a negative destination operand delivers
a positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE
equals the constant.

CMPX.A #018000h,EDE
JEQ TONI

; Compare EDE with 18000h
; EDE contains 18000h
; Not equal

A table word pointed to by R5 (20-bit address) is compared with R7. Jump to
label TONI if R7 contains a lower, signed, 16-bit number.

CMPX.W @R5,R7 ; Compare two signed numbers
JL TONI ; R7 < @R5
: R7 >= @R5

A table byte pointed to by R5 (20-bit address) is compared to the input in I/O
Port1. Jump to label TONI if the values are equal. The next table byte is
addressed.

CMPX.B @R5+,&P1IN
JEQ TONI

; Compare P1 bits with table. R5 + 1

; Equal contents

; Not equal

Note: Use CMPA for the following two cases for better density and execution.

CMPA Rsrc,Rdst or
CMPA #imm20,Rdst

16-Bit MSP430X CPU

* DADCX.A
* DADCX[.W]
* DADCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Add carry decimally to destination address-word
Add carry decimally to destination word
Add carry decimally to destination byte

DADCX.A dst
DADCX dst or DADCXW src,dst
DADCX.B dst

dst + C —> dst (decimally)

DADDX.A #0,dst
DADDX #0,dst
DADDX.B #0,dst

The carry bit (C) is added decimally to the destination.

Extended Instructions

N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h,

byte > 79h), reset if MSB is 0.
Z: Set if result is zero, reset otherwise.

C: Set if the BCD result is too large (address-word > 99999h,

word > 9999h, byte > 99h), reset otherwise.

V: Undefined.
OSCOFF, CPUOFF, and GIE are not affected.

The 40-bit counter, pointed to by R12 and R13, is incremented decimally.

DADDX.A #1,0(R12) ; Increment lower 20 bits
DADCX.A 0(R13) ; Add carry to upper 20 bits

16-Bit MSP430X CPU 4-123

Extended Instructions

DADDX.A
DADDX[.W]
DADDX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Add source address-word and carry decimally to destination address-word
Add source word and carry decimally to destination word
Add source byte and carry decimally to destination byte

DADDX.A src,dst
DADDX src,dst or DADDX.W src,dst
DADDX.B src,dst

src + dst + C — dst (decimally)

The source operand and the destination operand are treated as two (.B), four
(.W), or five (.A) binary coded decimals (BCD) with positive signs. The source
operand and the carry bit C are added decimally to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost. The result is not defined for non-BCD numbers. Both operands may
be located in the full address space.

N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h,
byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise.

C: Set if the BCD result is too large (address-word > 99999h,
word > 9999h, byte > 99h), reset otherwise.

V: Undefined.

OSCOFF, CPUOFF, and GIE are not affected.

Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two
words.

DADDX.A #10h,&DECCNTR ; Add 10 to 20-bit BCD counter

The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is
added decimally to an eight-digit BCD number contained in R4 and R5
(BCD+2 and R5 contain the MSDs).

CLRC ; Clear carry

DADDX.W BCD,R4 ; Add LSDs

DADDX.W BCD+2,R5 ; Add MSDs with carry

JC OVERFLOW ; Result >99999999: go to error routine
; Result ok

The two-digit BCD number contained in 20-bit address BCD is added
decimally to a two-digit BCD number contained in R4.

CLRC ; Clear carry
DADDX.B BCD,R4 ; Add BCD to R4 decimally.
; R4: 000ddh

4-124 16-Bit MSP430X CPU

Extended Instructions

* DECX.A Decrement destination address-word

* DECX[.W] Decrement destination word

* DECX.B Decrement destination byte

Syntax DECX dst
DECX dst or DECXW dst
DECX.B dst

Operation dst — 1 —> dst

Emulation SUBX.A #1,dst

SUBX #1,dst
SUBX.B #1,dst

Description The destination operand is decremented by one. The original contents are
lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by 1
DECX.A TONI : Decrement TONI

16-Bit MSP430X CPU 4-125

Extended Instructions

* DECDX.A
* DECDX[.W]
* DECDX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

4-126

Double-decrement destination address-word
Double-decrement destination word
Double-decrement destination byte

DECDX.A dst
DECDX dst
DECDX.B dst
dst — 2 —> dst

SUBX.A #2,dst
SUBX #2,dst
SUBX.B #2,dst

or DECDXW dst

The destination operand is decremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise

C: Reset if dst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.

RAM address-word TONI is decremented by 2.

DECDX.A TONI

16-Bit MSP430X CPU

; Decrement TONI by two

*INCX.A
* INCX[.W]
*INCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Extended Instructions

Increment destination address-word
Increment destination word
Increment destination byte

INCX.A dst
INCX dst
INCX.B dst
dst + 1 —> dst

ADDX.A #1,dst
ADDX #1,dst
ADDX.B #1,dst

or INCX.W dst

The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Set if dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

RAM address-word TONI is incremented by 1.

INCX.A TONI

; Increment TONI (20-bits)

16-Bit MSP430X CPU

4-127

Extended Instructions

* INCDX.A
* INCDX[.W]
* INCDX.B

Syntax

Operation

Emulation

Example

Status Bits

Mode Bits

Example

Double-increment destination address-word
Double-increment destination word
Double-increment destination byte

INCDX.A dst
INCDX dst
INCDX.B dst
dst + 2 —> dst

ADDX.A #2,dst
ADDX #2,dst
ADDX.B #2,dst

or INCDX.W dst

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFEh, reset otherwise
Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Set if dst contained OFFFFEh or OFFFFFh, reset otherwise
Set if dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise
Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

RAM byte LEO is incremented by two; PC points to upper memory

INCDX.B LEO

4-128 16-Bit MSP430X CPU

; Increment LEO by two

* INVX.A
* INVX[.W]
* INVX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Extended Instructions

Invert destination
Invert destination
Invert destination

INVX.A dst
INVX dst or INVX.W dst
INVX.B dst

.NOT.dst —> dst

XORX.A #OFFFFFh,dst
XORX #OFFFFh,dst
XORX.B #0FFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

20-bit content of R5 is negated (twos complement).

INVX.A R5 ; Invert R5

INCX.A R5 ; R5 is now negated

Content of memory byte LEO is negated. PC is pointing to upper memory
INVX.B LEO ; Invert LEO

INCX.B LEO ; MEM(LEO) is negated

16-Bit MSP430X CPU 4-129

Extended Instructions

MOVX.A
MOVX[.W]
MOVX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Loop

Example

Move source address-word to destination address-word
Move source word to destination word
Move source byte to destination byte

MOVX.A src,dst

MOVX src,dst or MOVX.W src,dst
MOVX.B src,dst

src — dst

The source operand is copied to the destination. The source operand is not
affected. Both operands may be located in the full address space.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Move a 20-bit constant 18000h to absolute address-word EDE.

MOVX.A #018000h,&EDE ; Move 18000h to EDE

The contents of table EDE (word data, 20-bit addresses) are copied to table
TOM. The length of the table is 030h words.

MOVA #EDE,R10 ; Prepare pointer (20-bit address)
MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
R10+2
CMPA #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
; Copy completed

The contents of table EDE (byte data, 20-bit addresses) are copied to table
TOM. The length of the table is 020h bytes.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter
Loop MOVX.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.

; R10+1

DEC R9 ; Decrement counter

JNZ Loop ; Not yet done
; Copy completed

4-130 16-Bit MSP430X CPU

Extended Instructions

Ten of the 28 possible addressing combinations of the MOVX.A instruction can
use the MOVA instruction. This saves two bytes and code cycles. Examples
for the addressing combinations are:

MOVX.A
MOVX.A
MOVX.A
MOVX.A
MOVX.A
MOVX.A

Rsrc,Rdst
#imm20,Rdst
&abs20,Rdst
@Rsrc,Rdst
@Rsrc+,Rdst
Rsrc,&abs20

MOVA Rsrc,Rdst ; Reg/Reg

MOVA #imm20,Rdst ; Immediate/Reg
MOVA &abs20,Rdst ; Absolute/Reg
MOVA @Rsrc,Rdst ; Indirect/Reg
MOVA @Rsrc+,Rdst ; Indirect,Auto/Reg
MOVA Rsrc,&abs20 ; Reg/Absolute

The next four replacements are possible only if 16-bit indexes are sufficient for
the addressing.

MOVX.A
MOVX.A
MOVX.A
MOVX.A

z20(Rsrc),Rdst
Rsrc,z20(Rdst)
symb20,Rdst
Rsrc,symb20

MOVA z16(Rsrc),Rdst ; Indexed/Reg
MOVA Rsrc,z16(Rdst) ; Reg/Indexed
MOVA symbi16,Rdst ; Symbolic/Reg
MOVA Rsrc,symb16 ; Reg/Symbolic

16-Bit MSP430X CPU 4-131

Extended Instructions

POPM.A
POPM[.W]
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Restore n CPU registers (20-bit data) from the stack
Restore n CPU registers (16-bit data) from the stack

POPM.A #n,Rdst 1<n<16
POPM.W #n,Rdst or POPM #n,Rdst 1<n<16

POPM.A: Restore the register values from stack to the specified CPU
registers. The stack pointer SP is incremented by four for each register
restored from stack. The 20-bit values from stack (2 words per register) are
restored to the registers.

POPM.W: Restore the 16-bit register values from stack to the specified CPU
registers. The stack pointer SP is incremented by two for each register
restored from stack. The 16-bit values from stack (one word per register) are
restored to the CPU registers.

Note : This does not use the extension word.

POPM.A: The CPU registers pushed on the stack are moved to the extended
CPU registers, starting with the CPU register (Rdst - n + 1). The stack pointer
is incremented by (n x 4) after the operation.

POPM.W: The 16-bit registers pushed on the stack are moved back to the
CPU registers, starting with CPU register (Rdst - n + 1). The stack pointer is
incremented by (n x 2) after the instruction. The MSBs (Rdst.19:16) of the
restored CPU registers are cleared

Not affected, except SR is included in the operation

OSCOFF, CPUOFF, and GIE are not affected, except SR is included in the op-
eration.

Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.A #5,R13 ; Restore R9, R10, R11, R12, R13
Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.W #5,R13 : Restore R9, R10, R11, R12, R13

4-132 16-Bit MSP430X CPU

PUSHM.A
PUSHM[.W]
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Extended Instructions

Save n CPU registers (20-bit data) on the stack
Save n CPU registers (16-bit words) on the stack

PUSHM.A #n,Rdst 1<n<16
PUSHM.W #n,Rdst or PUSHM #n,Rdst 1<n<16

PUSHM.A: Save the 20-bit CPU register values on the stack. The stack pointer
(SP) is decremented by four for each register stored on the stack. The MSBs
are stored first (higher address).

PUSHM.W: Save the 16-bit CPU register values on the stack. The stack
pointer is decremented by two for each register stored on the stack.

PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on
the stack. The stack pointer is decremented by (n x 4) after the operation. The
data (Rn.19:0) of the pushed CPU registers is not affected.

PUSHM.W: The n registers, starting with Rdst backwards, are stored on the
stack. The stack pointer is decremented by (n x 2) after the operation. The
data (Rn.19:0) of the pushed CPU registers is not affected.

Note : This instruction does not use the extension word.
Not affected.
OSCOFF, CPUOFF, and GIE are not affected.

Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.A #5,R13 ; Save R13, R12, R11, R10, R9
Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.W #5,R13 ; Save R13, R12, R11, R10, R9

16-Bit MSP430X CPU 4-133

Extended Instructions

* POPX.A Restore single address-word from the stack
* POPX[.W] Restore single word from the stack
* POPX.B Restore single byte from the stack
Syntax POPX.A dst
POPX dst or POPX.W dst
POPX.B dst
Operation Restore the 8/16/20-bit value from the stack to the destination. 20-bit

addresses are possible. The stack pointer SP is incremented by two (byte and
word operands) and by four (address-word operand).

Emulation MOVX(.B,.A) @SP+,dst

Description The item on TOS is written to the destination operand. Register Mode, Indexed
Mode, Symbolic Mode, and Absolute Mode are possible. The stack pointer is
incremented by two or four.

Note: the stack pointer is incremented by two also for byte operations.

Status Bits Not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Write the 16-bit value on TOS to the 20-bit address &EDE.
POPX.W &EDE ; Write word to address EDE
Example Write the 20-bit value on TOS to R9.
POPX.A R9 ; Write address-word to R9

4-134 16-Bit MSP430X CPU

PUSHX.A
PUSHX[.W]
PUSHX.B

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Extended Instructions

Save a single address-word on the stack
Save a single word on the stack
Save a single byte on the stack

PUSHX.A src
PUSHX src or PUSHX.W src
PUSHX.B src

Save the 8/16/20-bit value of the source operand on the TOS. 20-bit addresses
are possible. The stack pointer (SP) is decremented by two (byte and word
operands) or by four (address-word operand) before the write operation.

The stack pointer is decremented by two (byte and word operands) or by four
(address-word operand). Then the source operand is written to the TOS. All
seven addressing modes are possible for the source operand.

Note : This instruction does not use the extension word.
Not affected.
OSCOFF, CPUOFF, and GIE are not affected.

Save the byte at the 20-bit address &EDE on the stack.

PUSHX.B &EDE ; Save byte at address EDE

Save the 20-bit value in R9 on the stack.

PUSHX.A R9 : Save address-word in R9

16-Bit MSP430X CPU 4-135

Extended Instructions

RLAM.A
RLAM[.W]

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Rotate Left Arithmetically the 20-bit CPU register content
Rotate Left Arithmetically the 16-bit CPU register content

RLAM.A #n,Rdst 1<n<4

RLAM.W #n,Rdst or RLAM #n,Rdst 1<n<4

C « MSB « MSB-1 LSB+1 « LSB « 0

The destination operand is shifted arithmetically left one, two, three, or four
positions as shown in Figure 4—-44. RLAM works as a multiplication (signed
and unsigned) with 2, 4, 8, or 16. The word instruction RLAM.W clears the bits
Rdst.19:16

Note : This instruction does not use the extension word.

N: Set if result is negative
A: Rdst.19 =1, reset if Rdst.19 =0
.W: Rdst.15 =1, reset if Rdst.15 =0

Z Set if result is zero, reset otherwise
C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3
(n=4)

V: Undefined
OSCOFF, CPUOFF, and GIE are not affected.

The 20-bit operand in R5 is shifted left by three positions. It operates equal to
an arithmetic multiplication by 8.

RLAM.A #3,R5 ;R5=R5x8

Figure 4-44. Rotate Left Arithmetically RLAM[.W] and RLAM.A

4-136

19 16 15 0
0000 MSB »| LSB ¢ O
|
19 0

-

LSB ¢ o

16-Bit MSP430X CPU

* RLAX.A
* RLAX[.W]
* RLAX.B

Syntax

Operation

Emulation

Description

Extended Instructions

Rotate left arithmetically address-word
Rotate left arithmetically word
Rotate left arithmetically byte

RLAX.B dst
RLAX dst or RLAXW dst
RLAX.B dst

C <- MSB <- MSB-1 LSB+1<-LSB<-0

ADDX.A dst,dst
ADDX dst,dst
ADDX.B dst,dst

The destination operand is shifted left one position as shown in Figure 4-45.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX
instruction acts as a signed multiplication by 2.

Figure 4-45. Destination Operand—Arithmetic Shift Left

Status Bits

Mode Bits

Example

MSB 0

——————————————————— —

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs:

the initial value is 040000h < dst < 0C0000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R7 is multiplied by 2.

RLAX.A R7 ; Shift left R7 (20-bit)

16-Bit MSP430X CPU 4-137

Extended Instructions

* RLCX.A
* RLCX[.W]
* RLCX.B

Syntax

Operation

Emulation

Description

Rotate left through carry address-word
Rotate left through carry word
Rotate left through carry byte

RLCX.A dst
RLCX dst or RLCX.W dst
RLCX.B dst

C <- MSB <- MSB-1 LSB+1<-LSB<-C

ADDCX.A dst,dst
ADDCX dst,dst
ADDCX.B dst,dst

The destination operand is shifted left one position as shown in Figure 4-46.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 4-46. Destination Operand—Carry Left Shift

Status Bits

Mode Bits

Example

Example

MSB 0

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 040000h < dst < 0C0000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The 20-bit value in R5 is shifted left one position.

RLCX.A R5 ; (R5x2)+C ->R5

The RAM byte LEO is shifted left one position. PC is pointing to upper memory
RLCX.B LEO ; RAM(LEO) x 2 + C —> RAM(LEO)

4-138 16-Bit MSP430X CPU

RRAM.A
RRAM[.W]
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Extended Instructions

Rotate Right Arithmetically the 20-bit CPU register content
Rotate Right Arithmetically the 16-bit CPU register content

RRAM.A #n,Rdst 1<n<4
RRAM.W #n,Rdst or RRAM #n,Rdst 1<n<4

MSB - MSB — MSB-1LSB+1 - LSB - C

The destination operand is shifted right arithmetically by one, two, three, or
four bit positions as shown in Figure 4-47. The MSB retains its value (sign).
RRAM operates equal to a signed division by 2/4/8/16. The MSB is retained
and shifted into MSB-1. The LSB+1 is shifted into the LSB, and the LSB is
shifted into the carry bit C. The word instruction RRAM.W clears the bits
Rdst.19:16.

Note : This instruction does not use the extension word.

N: Set if result is negative
A: Rdst.19 =1, reset if Rdst.19 =0
.W: Rdst.15 =1, reset if Rdst.15 =0

Z Set if result is zero, reset otherwise

C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3
(n=4)

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 20-bit number in R5 is shifted arithmetically right two positions.

RRAM.A #2,R5 ; R5/4 -> R5
The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) x R15

PUSHM.A #1,R15 ; Save extended R15 on stack
RRAM.A #1,R15 ; R15x 0.5 -> R15

ADDX.A @SP+,R15 ;R15x 0.5+ R15=1.5xR15-> R15
RRAM.A #1,R15 ; (1.5xR15) x 0.5 =0.75x R15 -> R15

Figure 4-47. Rotate Right Arithmetically RRAM[.W] and RRAM.A

19 16 15 0

0000 |:' MSB — | LSB —‘

19 0

" |:' MSB — | LSB —‘

16-Bit MSP430X CPU 4-139

Extended Instructions

RRAX.A
RRAX[.W]
RRAX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Rotate Right Arithmetically the 20-bit operand
Rotate Right Arithmetically the 16-bit operand
Rotate Right Arithmetically the 8-bit operand

RRAX.A Rdst
RRAX.W Rdst
RRAX Rdst
RRAX.B Rdst

RRAX.A dst
RRAX.W dst or RRAX dst
RRAX.B dst

MSB —- MSB — MSB-1. ... LSB+1 - LSB - C

Register Mode for the destination: the destination operand is shifted right by
one bit position as shown in Figure 4-48. The MSB retains its value (sign). The
word instruction RRAX.W clears the bits Rdst.19:16, the byte instruction
RRAX.B clears the bits Rdst.19:8. The MSB retains its value (sign), the LSB is
shifted into the carry bit. RRAX here operates equal to a signed division by 2.

All other modes for the destination: the destination operand is shifted right
arithmetically by one bit position as shown in Figure 4-49. The MSB retains
its value (sign), the LSB is shifted into the carry bit. RRAX here operates equal
to a signed division by 2. All addressing modes — with the exception of the
Immediate Mode — are possible in the full memory.

N: Set if result is negative
A: dst.19 =1, reset if dst.19=0
W: dst.15 =1, reset if dst.15=0
.B: dst.7 =1, resetifdst.7=0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

4-140 16-Bit MSP430X CPU

Extended Instructions

Example The signed 20-bit number in R5 is shifted arithmetically right four positions.
RPT #4
RRAX.A R5 ; R5/16 —> R5

Example The signed 8-bit value in EDE is multiplied by 0.5.
RRAX.B &EDE ; EDE/2 -> EDE

Figure 4-48. Rotate Right Arithmetically RRAX(.B,.A). Register Mode
19 8 7 0

0 < OLMSB—*LSB_

19 16 15 0

0000 ﬂSB — | LSB |+

19 0

[MsB s |

Figure 4-49. Rotate Right Arithmetically RRAX(.B,.A). Non-Register Mode
7 0

el

15 0

ﬂss | Lse W

31 20
o | - _ 0
19 0

[MSB — | LSB ~‘

16-Bit MSP430X CPU 4-141

Extended Instructions

RRCM.A Rotate Right through carry the 20-bit CPU register content
RRCM[.W] Rotate Right through carry the 16-bit CPU register content
Syntax RRCM.A #n,Rdst 1<n<4
RRCM.W #n,Rdst or RRCM #n,Rdst 1<n<4
Operation C > MSB —» MSB-1 — ... LSB+1 - LSB - C
Description The destination operand is shifted right by one, two, three, or four bit positions

as shown in Figure 4-50. The carry bit C is shifted into the MSB, the LSB is
shifted into the carry bit. The word instruction RRCM.W clears the bits
Rdst.19:16

Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
A: Rdst.19 =1, reset if Rdst.19 =0
.W: Rdst.15 =1, reset if Rdst.15 =0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3) or LSB+3
(n=4)
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The address-word in R5 is shifted right by three positions. The MSB-2 is
loaded with 1.
SETC ; Prepare carry for MSB-2
RRCM.A #3,R5 ; R5 = R5 » 3 + 20000h
Example The word in R6 is shifted right by two positions. The MSB is loaded with the

LSB. The MSB-1 is loaded with the contents of the carry flag.

RRCM.W #2,R6 ; R6 =R6 » 2. R6.19:16 =0

Figure 4-50. Rotate Right Through Carry RRCM[.W] and RRCM.A

19 1615 0
0 MSB — | LsB
:]
19 0

F MSB — | LSB —‘

4-142 16-Bit MSP430X CPU

Extended Instructions

RRCX.A Rotate Right through carry the 20-bit operand
RRCX[.W] Rotate Right through carry the 16-bit operand
RRCX.B Rotate Right through carry the 8-bit operand
Syntax RRCX.A Rdst

RRCX.W Rdst

RRCX Rdst

RRCX.B Rdst

RRCX.A dst

RRCX.W dst or RRCX dst

RRCX.B dst
Operation C »>MSB —» MSB-1 — ... LSB+1 - LSB - C
Description Register Mode for the destination: the destination operand is shifted right by

one bit position as shown in Figure 4-51. The word instruction RRCX.W clears
the bits Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The
carry bit C is shifted into the MSB, the LSB is shifted into the carry bit.

All other modes for the destination: the destination operand is shifted right by
one bit position as shown in Figure 4-52. The carry bit C is shifted into the
MSB, the LSB is shifted into the carry bit. All addressing modes — with the
exception of the Immediate Mode — are possible in the full memory.

Status Bits N: Set if result is negative
A: dst.19 =1, reset if dst.19=0
W: dst.15 =1, reset if dst.15=0
.B: dst.7 =1, resetifdst.7=0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

16-Bit MSP430X CPU 4-143

Extended Instructions

Example The 20-bit operand at address EDE is shifted right by one position. The MSB is
loaded with 1.
SETC ; Prepare carry for MSB
RRCX.A EDE ; EDE = EDE » 1 + 80000h
Example The word in R6 is shifted right by twelve positions.
RPT #12
RRCX.W R6 ; R6=R6 » 12. R6.19:16 =0

Figure 4-51. Rotate Right Through Carry RRCX(.B,.A). Register Mode

19 8 7 0
Y o | mse | ——— [Lss |
T
19 16 15 0

0000 MSB — | LSB |+

o]

19 0

=

MSB — | LSB —‘

Figure 4-52. Rotate Right Through Carry RRCX(.B,.A). Non-Register Mode

7 0
MSB|————— | LSB

=

15 0
FB MSB R LSBW

31 20

o | - - 0

19 0
MSB —» | LSB —‘

4-144 16-Bit MSP430X CPU

RRUM.A
RRUM[.W]
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Extended Instructions

Rotate Right Unsigned the 20-bit CPU register content
Rotate Right Unsigned the 16-bit CPU register content

RRUM.A #n,Rdst 1<n<4
RRUM.W #n,Rdst or RRUM #n,Rdst 1<n<4

0 —-MSB—-MSB-1.-...LSB+1 =-LSB—>C

The destination operand is shifted right by one, two, three, or four bit positions
as shown in Figure 4-53. Zero is shifted into the MSB, the LSB is shifted into
the carry bit. RRUM works like an unsigned division by 2, 4, 8, or 16. The word
instruction RRUM.W clears the bits Rdst.19:16.

Note : This instruction does not use the extension word.

N: Set if result is negative
A: Rdst.19 =1, reset if Rdst.19 =0
.W: Rdst.15 =1, reset if Rdst.15 =0

Z Set if result is zero, reset otherwise

C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3) or LSB+3
(n=4)

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The unsigned address-word in R5 is divided by 16.

RRUM.A #4,R5 ; R5 =R5 » 4. R5/16
The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.

RRUM.W #1,R6 ; R6 = R6/2. R6.19:15=0

Figure 4-53. Rotate Right Unsigned RRUM[.W] and RRUM.A

19 16 15 0
0000 MSB — | LsB |-
0
19 0

+0ﬂ MSB — | LsB |

16-Bit MSP430X CPU 4-145

Extended Instructions

RRUX.A
RRUX[.W]
RRUX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Rotate Right unsigned the 20-bit operand
Rotate Right unsigned the 16-bit operand
Rotate Right unsigned the 8-bit operand

RRUX.A Rdst
RRUX.W Rdst
RRUX Rdst
RRUX.B Rdst

C=0 - MSB - MSB-1 — ... LSB+1 - LSB > C

RRUX is valid for register Mode only: the destination operand is shifted right by
one bit position as shown in Figure 4-54. The word instruction RRUX.W clears
the bits Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8.
Zero is shifted into the MSB, the LSB is shifted into the carry bit.

N: Set if result is negative
A: dst.19 =1, reset if dst.19=0
W: dst.15 =1, reset if dst.15=0
.B: dst.7 =1, resetifdst.7=0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The word in R6 is shifted right by twelve positions.

RPT #12
RRUX.W R6 ; R6 =R6 » 12. R6.19:16 = 0

Figure 4-54. Rotate Right Unsigned RRUX(.B,.A). Register Mode

19 8 7 0
O-——— = 0 MSB|———*| LSB
0 —‘
19 16 15 0
0000 MSB — LSB
0 —‘
19 0

-

MSB — | LSB —‘

4-146 16-Bit MSP430X CPU

* SBCX.A
* SBCX[.W]
* SBCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Extended Instructions

Subtract source and borrow/.NOT. carry from destination address-word
Subtract source and borrow/.NOT. carry from destination word
Subtract source and borrow/.NOT. carry from destination byte

SBCX.A dst
SBCX dst or SBCX.W dst
SBCX.B dst

dst + OFFFFFh + C —> dst
dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBCX.A #0,dst
SUBCX #0,dst
SUBCX.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUBX.B @R13,0(R12) ; Subtract LSDs
SBCX.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

16-Bit MSP430X CPU 4-147

Extended Instructions

SUBX.A
SUBX[.W]
SUBX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Subtract source address-word from destination address-word
Subtract source word from destination word
Subtract source byte from destination byte

SUBX.A src,dst
SUBX src,dst or SUBX.W src,dst
SUBX.B src,dst

(.not. src) + 1 + dst — dst or dst - src — dst

The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The source
operand is not affected. The result is written to the destination operand. Both
operands may be located in the full address space.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs).

SUBX.A #87654h,EDE ; Subtract 87654h from EDE+2|EDE

A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to
label TONI if R7 contains zero after the instruction. R5 is auto-incremented by
2.R7.19:16 =0

SUBX.W @R5+,R7
Jz TONI

; Subtract table number from R7. R5 + 2
; R7 = @R5 (before subtraction)
; R7 <> @R5 (before subtraction)

Byte CNT is subtracted from the byte R12 points to in the full address space.
Address of CNT is within PC + 512 K.

SUBX.B CNT,0(R12) ; Subtract CNT from @R12

Note: Use SUBA for the following two cases for better density and execution.

SUBX.A Rsrc,Rdst or
SUBX.A #imm20,Rdst
4-148 16-Bit MSP430X CPU

SUBCX.A
SUBCX[.W]
SUBCX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Subtract source address-word with carry from destination address-word
Subtract source word with carry from destination word
Subtract source byte with carry from destination byte

SUBCX.A src,dst
SUBCX src,dst or SUBCX.W src,dst
SUBCX.B src,dst

(.not. src) + C +dst > dst or dst-(src-1)+ C — dst

The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + carry to the destination. The
source operand is not affected, the result is written to the destination operand.
Both operands may be located in the full address space.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 20-bit constant 87654h is subtracted from R5 with the carry from the
previous instruction.

SUBCX.A #87654h,R5 : Subtract 87654h + C from R5

A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from
a 48-bit counter in RAM, pointed to by R7. R5 auto-increments to point to the
next 48-bit number.

SUBX.W @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBCX.W @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBCX.W @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Byte CNT is subtracted from the byte, R12 points to. The carry of the previous
instruction is used. 20-bit addresses.

SUBCX.B &CNT,0(R12) ; Subtract byte CNT from @R12

16-Bit MSP430X CPU 4-149

Extended Instructions

SWPBX.A
SWPBX[.W]

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Swap bytes of lower word
Swap bytes of word

SWPBX.A dst
SWPBX.W dst or SWPBX dst

dst.15:8 < dst.7:0

Register Mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is
used, Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are
cleared.

Other Modes: When the .A extension is used, bits 31:20 of the destination
address are cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped
with bits 7:0. When the .W extension is used, bits 15:8 are swapped with bits
7:0 of the addressed word.

Not affected
OSCOFF, CPUOFF, and GIE are not affected.

Exchange the bytes of RAM address-word EDE.

MOVX.A #23456h,&EDE ; 23456h —> EDE
SWPBX.A EDE ; 25634h —> EDE

Exchange the bytes of R5.

MOVA #23456h,R5 ; 23456h —> R5
SWPBX.W R5 ; 05634h —> R5

Figure 4-55. Swap Bytes SWPBX.A Register Mode

Before SWPBX.A

19 16 15 8 7 0
X High Byte Low Byte

After SWPBX.A

19 16 15 8 7 0
X Low Byte High Byte

4-150 16-Bit MSP430X CPU

Figure 4-56. Swap Bytes SWPBX.A In Memory

Before SWPBX.A

Extended Instructions

31 20 19 15 8 7 0
X High Byte Low Byte
After SWPBX.A
31 20 19 15 8 7 0
0 Low Byte High Byte
Figure 4-57. Swap Bytes SWPBX|.W] Register Mode
Before SWPBX
19 16 15 7 0
X High Byte Low Byte
After SWPBX
19 16 15 7 0
0 Low Byte High Byte
Figure 4-58. Swap Bytes SWPBX[.W] In Memory
Before SWPBX
15 7 0
High Byte Low Byte
After SWPBX
15 7 0
Low Byte High Byte

16-Bit MSP430X CPU 4-151

Extended Instructions

SXTX.A
SXTX[.W]

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Extend sign of lower byte to address-word
Extend sign of lower byte to word

SXTX.A dst
SXTX.W dst or SXTX dst

dst.7 — dst.15:8, Rdst.7 — Rdst.19:8 (Register Mode)

Register Mode:
The sign of the low byte of the operand (Rdst.7) is extended into the bits
Rdst.19:8.

Other Modes:
SXTX.A: the sign of the low byte of the operand (dst.7) is extended into
dst.19:8. The bits dst.31:20 are cleared.

SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into
dst.15:8.

N: Set if result is negative, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits
31:20 located in EDE+2 are cleared.

SXTX.A &EDE ; Sign extended EDE —> EDE+2/EDE

Figure 4-59. Sign Extend SXTX.A

SXTX.ARdst
19 1615 8 76 0
< S
SXTX.Adst
31 2019 1615 8 76 0
o . 0| < S

4-152 16-Bit MSP430X CPU

Extended Instructions

Figure 4-60. Sign Extend SXTX[.W]

SXTX[.W] Rdst
19 16 15 8 7 6 0
< s
SXTX[.W] dst
15 8 7 6 0
< s

16-Bit MSP430X CPU 4-153

Extended Instructions

* TSTX.A
* TSTX[.W]
* TSTX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Test destination address-word
Test destination word
Test destination byte

TSTX.A dst
TSTX dst or TST.W dst
TST.B dst

dst + OFFFFFh + 1
dst + OFFFFh + 1
dst + OFFh + 1

CMPX.A #0,dst
CMPX #0,dst
CMPX.B #0,dst

The destination operand is compared with zero. The status bits are set
according to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C: Set

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

RAM byte LEO is tested; PC is pointing to upper memory. If it is negative,
continue at LEONEG; if it is positive but not zero, continue at LEOPOS.

TSTX.B LEO ; Test LEO

JN LEONEG ; LEO is negative

JZ LEOZERO ; LEOis zero
LEOPOS ... ; LEO is positive but not zero
LEONEG ; LEO is negative
LEOZERO ; LEO is zero

4-154 16-Bit MSP430X CPU

XORX.A
XORX[.W]
XORX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Exclusive OR source address-word with destination address-word
Exclusive OR source word with destination word
Exclusive OR source byte with destination byte

XORX.A src,dst
XORX src,dst or XORX.W src,dst
XORX.B src,dst

src .xor. dst — dst

The source and destination operands are exclusively ORed. The result is
placed into the destination. The source operand is not affected. The previous
contents of the destination are lost. Both operands may be located in the full
address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (carry = .not. Zero)
V: Set if both operands are negative (before execution), reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Toggle bits in address-word CNTR (20-bit data) with information in
address-word TONI (20-bit address).

XORX.A TONI,&CNTR ; Toggle bits in CNTR

A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.

XORX.W @R5,R6 ; Toggle bits in R6. R6.19:16 =0

Reset to zero those bits in the low byte of R7 that are different from the bits in
byte EDE (20-bit address).

XORX.B EDE,R7
INV.B R7

; Set different bits to 1 in R7
; Invert low byte of R7. R7.19:8 = 0.

16-Bit MSP430X CPU 4-155

Address Instructions

4.6.4 Address Instructions

MSP430X address instructions are instructions that support 20-bit operands
but have restricted addressing modes. The addressing modes are restricted
to the Register mode and the Immediate mode, except for the MOVA
instruction. Restricting the addressing modes removes the need for the
additional extension-word op-code improving code density and execution
time. The MSP430X address instructions are listed and described in the
following pages.

4-156 16-Bit MSP430X CPU

ADDA

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Address Instructions

Add 20-bit source to a 20-bit destination register

ADDA Rsrc,Rdst
ADDA #imm20,Rdst

src + Rdst — Rdst

The 20-bit source operand is added to the 20-bit destination CPU register. The
previous contents of the destination are lost. The source operand is not
affected.

Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)
Set if result is zero, reset otherwise

Set if there is a carry from the 20-bit result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.
ADDA #0A4320h,R5 ; Add A4320h to 20-bit R5

JC TONI ; Jump on carry
; No carry occurred

16-Bit MSP430X CPU 4-157

Address Instructions

* BRA
Syntax
Operation

Emulation

Description

Status Bits

Mode Bits

Examples

Branch to destination
BRA dst
dst - PC

MOVA dst,PC

An unconditional branch is taken to a 20-bit address anywhere in the full
address space. All seven source addressing modes can be used. The branch
instruction is an address-word instruction. If the destination address is
contained in a memory location X, it is contained in two ascending words: X
(LSBs) and (X + 2) (MSBs).

Not affected
Not affected
Not affected
Not affected

OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.

Immediate Mode: Branch to label EDE located anywhere in the 20-bit address
space or branch directly to address.

BRA #EDE ; MOVA #imm20,PC
BRA #01AAO4h

Symbolic Mode: Branch to the 20-bit address contained in addresses EXEC
(LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where
Xis within £32 K. Indirect addressing.

BRA EXEC . MOVA z16(PC),PC

Note: if the 16-bit index is not sufficient, a 20-bit index may be used with the
following instruction.

MOVX.A EXEC,PC ; 1M byte range with 20-bit index

Absolute Mode: Branch to the 20-bit address contained in absolute addresses
EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

BRA &EXEC ; MOVA &abs20,PC

Register Mode: Branch to the 20-bit address contained in register R5. Indirect
R5.

BRA R5 ; MOVA R5,PC

4-158 16-Bit MSP430X CPU

Address Instructions

Indirect Mode: Branch to the 20-bit address contained in the word pointed to
by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect
R5.

BRA @R5 ; MOVA @R5,PC

Indirect, Auto-Increment Mode: Branch to the 20-bit address contained in the
words pointed to by register R5 and increment the address in R5 afterwards
by 4. The next time the S/W flow uses R5 as a pointer, it can alter the program
execution due to access to the next address in the table pointed to by R5.
Indirect, indirect R5.

BRA @R5+ ; MOVA @R5+,PC. R5 + 4

Indexed Mode: Branch to the 20-bit address contained in the address pointed
to by register (R5 + X) (e.g. a table with addresses starting at X). (R5 + X)
points to the LSBs, (R5 + X + 2) points to the MSBs of the address. X is within
R5 + 32 K. Indirect, indirect (R5 + X).

BRA X(R5) : MOVA z16(R5),PC

Note: if the 16-bit index is not sufficient, a 20-bit index X may be used with the
following instruction:

MOVX.A X(R5),PC ; 1M byte range with 20-bit index

16-Bit MSP430X CPU 4-159

Address Instructions

CALLA
Syntax

Operation

Description

Status Bits

Mode Bits

Examples

Call a Subroutine

CALLA dst

dst — tmp20-bit dst is evaluated and stored

SP -2 - SP

PC.19:16 — @SP updated PC with return address to TOS (MSBs)
SP -2 - SP

PC.15:0 — @SP updated PC to TOS (LSBs)

tmp - PC saved 20-bit dst to PC

A subroutine call is made to a 20-bit address anywhere in the full address
space. All seven source addressing modes can be used. The call instruction is
an address-word instruction. If the destination address is contained in a
memory location X, it is contained in two ascending words: X (LSBs) and
(X + 2) (MSBs). Two words on the stack are needed for the return address.
The return is made with the instruction RETA.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC or call directly an address.

CALLA #EXEC
CALLA #01AAO04h

; Start address EXEC
; Start address 01AA04h
Symbolic Mode: Call a subroutine at the 20-bit address contained in

addresses EXEC (LSBs) and EXEC+2 (MSBs). EXEC is located at the
address (PC + X) where X is within £32 K. Indirect addressing.

CALLA EXEC ; Start address at @ EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 20-bit address contained in absolute
addresses EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

CALLA &EXEC ; Start address at @ EXEC

Register Mode: Call a subroutine at the 20-bit address contained in register
R5. Indirect R5.

CALLA R5 ; Start address at @R5

4-160 16-Bit MSP430X CPU

Address Instructions

Indirect Mode: Call a subroutine at the 20-bit address contained in the word
pointed to by register R5 (LSBs). The MSBs have the address (R5 + 2).
Indirect, indirect R5.

CALLA @R5 ; Start address at @R5

Indirect, Auto-Increment Mode: Call a subroutine at the 20-bit address
contained in the words pointed to by register R5 and increment the 20-bit
address in R5 afterwards by 4. The next time the S/W flow uses R5 as a
pointer, it can alter the program execution due to access to the next word
address in the table pointed to by R5. Indirect, indirect R5.

CALLA @R5+ ; Start address at @R5. R5 + 4

Indexed Mode: Call a subroutine at the 20-bit address contained in the
address pointed to by register (R5 + X) e.g. a table with addresses starting at
X. (R5 + X) points to the LSBs, (R5 + X + 2) points to the MSBs of the word
address. X is within R5 £32 K. Indirect, indirect (R5 + X).

CALLA X(R5) ; Start address at @ (R5+X). z16(R5)

16-Bit MSP430X CPU 4-161

Address Instructions

*CLRA
Syntax
Operation
Emulation
Description
Status Bits

Example

Clear 20-bit destination register

CLRA Rdst
0 —> Rdst
MOVA #0,Rdst

The destination register is cleared.
Status bits are not affected.
The 20-bit value in R10 is cleared.

CLRA R10 ; 0—>R10

4-162 16-Bit MSP430X CPU

CMPA

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Address Instructions

Compare the 20-bit source with a 20-bit destination register

CMPA Rsrc,Rdst
CMPA #imm20,Rdst

(.not. src) + 1 + Rdst or Rdst - src

The 20-bit source operand is subtracted from the 20-bit destination CPU
register. This is made by adding the 1’s complement of the source + 1 to the
destination register. The result affects only the status bits.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive
destination operand delivers a negative result, or if the subtraction of
a positive source operand from a negative destination operand delivers
a positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 20-bit immediate operand and R6 are compared. If they are equal the
program continues at label EQUAL.

CMPA #12345h,R6 ; Compare R6 with 12345h
JEQ EQUAL ; R5 = 12345h
; Not equal

The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or
equal to R6, the program continues at label GRE.

CMPA R6,R5 ; Compare R6 with R5 (R5 — R6)
JGE GRE ; R5 >= R6
; R5 < R6

16-Bit MSP430X CPU 4-163

Address Instructions

* DECDA
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

Double-decrement 20-bit destination register

DECDA Rdst

Rdst — 2 —> Rdst

SUBA #2,Rdst

The destination register is decremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if Rdst contained 2, reset otherwise

C: Reset if Rdst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R5 is decremented by 2

DECDA R5 ; Decrement R5 by two

4-164 16-Bit MSP430X CPU

* INCDA
Syntax
Operation
Emulation
Example

Status Bits

Mode Bits

Example

Address Instructions

Double-increment 20-bit destination register

INCDA Rdst

dst + 2 —> dst

ADDA #2,Rdst

The destination register is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if Rdst contained OFFFFEh, reset otherwise
Set if Rdst contained OFFFEh, reset otherwise
Set if Rdst contained OFEh, reset otherwise

C: Set if Rdst contained OFFFFEh or OFFFFFh, reset otherwise
Set if Rdst contained OFFFEh or OFFFFh, reset otherwise
Set if Rdst contained OFEh or OFFh, reset otherwise

V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise
Set if Rdst contained 07FFEh or 07FFFh, reset otherwise
Set if Rdst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R5 is incremented by 2

INCDA R5 ; Increment R5 by two

16-Bit MSP430X CPU 4-165

Address Instructions

MOVA

Syntax

Operation

Description

Status Bits
Mode Bits

Examples

Move the 20-bit source to the 20-bit destination

MOVA Rsrc,Rdst
MOVA #imm?20,Rdst
MOVA z16(Rsrc),Rdst
MOVA EDE,Rdst
MOVA &abs20,Rdst
MOVA @Rsrc,Rdst
MOVA @Rsrc+,Rdst
MOVA Rsrc,z16(Rdst)
MOVA Rsrc,&abs20

src — Rdst
Rsrc — dst

The 20-bit source operand is moved to the 20-bit destination. The source
operand is not affected. The previous content of the destination is lost.

Not affected
OSCOFF, CPUOFF, and GIE are not affected.

Copy 20-bit value in R9 to R8.

MOVA R9,R8 : R9 -> R8
Write 20-bit immediate value 12345h to R12.

MOVA #12345h,R12 ; 12345h -> R12

Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in
addresses (R9 + 100h) LSBs and (R9 + 102h) MSBs

MOVA 100h(R9),R8 ; Index: = 32 K. 2 words transferred

Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2
(MSBs) to R12.

MOVA &EDE,R12 : &EDE -> R12. 2 words transferred

Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12.
PC index £32 K.

MOVA EDE,R12 : EDE -> R12. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in
addresses @R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9,R8 ; @R9 -> R8. 2 words transferred

4-166 16-Bit MSP430X CPU

Address Instructions

Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by
four afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2)
MSBs.

MOVA @R9+,R8 ; @R9 -> R8. R9 + 4. 2 words transferred.

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination
operand in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.

MOVA R8,100n(R9) ; Index: +- 32 K. 2 words transferred

Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and
EDE+2 (MSBs).

MOVA R13,&EDE : R13 -> EDE. 2 words transferred

Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBs).
PC index £32 K.

MOVA R13,EDE : R13 -> EDE. 2 words transferred

16-Bit MSP430X CPU 4-167

Address Instructions

* RETA Return from subroutine
Syntax RETA
Operation @SP — PC.15:.0 LSBs (15:0) of saved PC to PC.15:0
SP+2 —» SP
@SP — PC.19:16 MSBs (19:16) of saved PC to PC.19:16
SP+2 —» SP
Emulation MOVA @SP+,PC
Description The 20-bit return address information, pushed onto the stack by a CALLA

instruction, is restored to the program counter PC. The program continues at
the address following the subroutine call. The status register bits SR.11:0 are
not affected. This allows the transfer of information with these bits.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Call a subroutine SUBR from anywhere in the 20-bit address space and return
to the address after the CALLA.

CALLA #SUBR ; Call subroutine starting at SUBR
; Return by RETA to here
SUBR PUSHM.A #2,R14 ; Save R14 and R13 (20 bit data)
; Subroutine code
POPM.A #2,R14 ; Restore R13 and R14 (20 bit data)
RETA ; Return (to full address space)

4-168 16-Bit MSP430X CPU

Address Instructions

* TSTA Test 20-bit destination register
Syntax TSTA Rdst
Operation dst + OFFFFFh + 1

dst + OFFFFh + 1
dst + OFFh + 1

Emulation CMPA #0,Rdst

Description The destination register is compared with zero. The status bits are set
according to the result. The destination register is not affected.

Status Bits N: Set if destination register is negative, reset if positive
Z: Set if destination register contains zero, reset otherwise
C: Set
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is tested. If it is negative, continue at R7NEG,; if it is
positive but not zero, continue at R7POS.
TSTA R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ... ; R7 is zero

16-Bit MSP430X CPU 4-169

Address Instructions

SUBA

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Subtract 20-bit source from 20-bit destination register

SUBA Rsrc,Rdst
SUBA #imm20,Rdst

(.not.src) + 1 + Rdst —» Rdst or Rdst — src — Rdst

The 20-bit source operand is subtracted from the 20-bit destination register.
This is made by adding the 1’s complement of the source + 1 to the
destination. The result is written to the destination register, the source is not
affected.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB (Rdst.19), reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program
continues at label TONI.

SUBA R5,R6 ; R6 — R5 -> R6
JC TONI ; Carry occurred
; No carry

4-170 16-Bit MSP430X CPU

Chapter 5

FLL+ Clock Module

The FLL+ clock module provides the clocks for MSP430x4xx devices. This
chapter discusses the FLL+ clock module. The FLL+ clock module is

implemented in all MSP430x4xx devices.

Topic Page
5.1 FLL+ Clock Module Introductionccoiiiiiiiinnn... 5-2
5.2 FLL+ Clock Module Operationc.cviiiiiiiiinnnnnnnnnn 5-8
5.3 FLL+ Clock Module Registersccciiiiiiiiinnnnnnnnn 5-15

5-1

5.1 FLL+ Clock Module Introduction

5-2

The frequency-locked loop (FLL+) clock module supports low system cost and
ultra low-power consumption. Using three internal clock signals, the user can
select the best balance of performance and low power consumption. The FLL+
features digital frequency-locked loop (FLL) hardware. The FLL operates
together with a digital modulator and stabilizes the internal digitally controlled
oscillator (DCO) frequency to a programmable multiple of the LFXT1 watch
crystal frequency. The FLL+ clock module can be configured to operate
without any external components, with one or two external crystals, or with
resonators, under full software control.

The FLL+ clock module includes two or three clock sources:

(1 LFXT1CLK: Low-frequency/high-frequency oscillator that can be used
either with low-frequency 32768-Hz watch crystals or standard crystals or
resonators in the 450-kHz to 8-MHz range. See the device-specific data
sheet for details.

(1 XT2CLK: Optional high-frequency oscillator that can be used with
standard crystals, resonators, or external clock sources in the 450-kHz to
8-MHz range. In MSP430F47x3/4 and MSP430F471xx devices the upper
limit is 16 MHz. See the device-specific data sheet for details.

(O DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type
characteristics, stabilized by the FLL.

(1 VLOCLK: Internal very low power, low frequency oscillator with 12-kHz
typical frequency.

Four clock signals are available from the FLL+ module:

(O ACLK: Auxiliary clock. The ACLK is software selectable as LFXT1CLK or
VLOCLK as clock source. ACLK is software selectable for individual
peripheral modules.

(O ACLK/n: Buffered output of the ACLK. The ACLK/n is ACLK divided by
1,2,4, or 8 and used externally only.

(O MCLK: Master clock. MCLK is software selectable as LFXT1CLK,
VLOCLK, XT2CLK (if available), or DCOCLK. MCLK can be divided by 1,
2, 4, or 8 within the FLL block. MCLK is used by the CPU and system.

(1 SMCLK: Sub-main clock. SMCLK is software selectable as XT2CLK (if
available) or DCOCLK. SMCLK is software selectable for individual
peripheral modules.

FLL+ Clock Module

The block diagrams of the FLL+ clock module are shown in Figure 5-1 to
Figure 5-4.

(O Figure 5-1 shows the block diagram for MSP430x43x, MSP430x44x,
MSP430FG47x, MSP430F47x, and MSP430x461x devices.

(O Figure 5-2 shows the block diagram for MSP430x42x and MSP430x41x
devices.

(O Figure 5-3 shows the block diagram for MSP430x47x3/4 and
MSP430F471xx devices.

(1 Figure 5-4 shows the block diagram for MSP430x41x2 devices.

FLL+ Clock Module 5-3

Figure 5—-1. MSP430x43x, MSP430x44x, MSP430FG47x, MSP430F47x, and
MSP430x461x Frequency-Locked Loop

5-4

FLL+ Clock Module

FLL_DIVx
Divider >
1/2/4/8 ACLK/n
f
Crystal
rysta . >
OSCOFF XTS_FLL ActK
T | |
XIN oV _| }—T——l
" T SCGO PUC
= d
LFOff
<:'_ Enable Reset
oV
XOuT —I XT10ff + SELMx
10-bit
l J- LFXT1 Oscillator Frequency CPUOFF
XCAPXPE Integrator
/(N+1) - E
10
SCG1 FNx / M etk
r L I
off
oo o0
Generator Modulator
FLLDx fococLk
T T ; DCOPLUS
i DCO
Divider <
’ /1/2/4/8 SELS
1
toco/D e SMCLKOFF
XT20FF l/
XT2IN T
< [
XT20UT XT2 Oscillator

Figure 5-2. MSP430x42x and MSP430x41x Frequency-Locked Loop

FLL_DIVx
Divider >
/1/2/4/8 ACLK/n

f
Crystal
H >—¢ Y >
ACLK

OSCOFF XTS_FLL

T []

XIN oV % }_T_—l
F T SCGO PUC
—
LFOff 5 ¢
|_—< I— Enable Reset
oV
xout g xtioff | P>+
Ll LexT1oscillat oo
scillator Frequency
CPUOFF
XCAPXPF Integrator
/(N+1) -
10
SCG1 FNx y M MCLK to CPU
I I
ff
“oc || P° ! >
Generator Modulator MCLK to Peripherals
FLLDx fococLk
T T ‘ DCOPLUS
Divider) bCo
/1/2/4/8
1
focon o >

SMCLK

FLL+ Clock Module 5-5

Figure 5-3. MSP430x47x3/4 and MSP430F471xx Frequency-Locked Loop

FLL_DIVx
Divider >
/1/2/4/8 ACLK/n

f
II: Crystal
rysta °® 2
ACLK

OSCOFF XTS_FLL

T | |

XIN oV % }—T——l
LF

SCGO0 PUC

XT
LFOff
< | Enable Reset
oV
XOouT —I XT10ff —> + SELMx
10-bit
l L LFXT1 Oscillator Frequency CPUOFF
XCAPXPE Integrator
/(N+1) - E
10
SCG1 FNx / M etk
r L I
off
o0 o0
Generator Modulator
FLLDx fococLk
T T ; DCOPLUS
i DCO
Divider <
g /1/2/4/8 SELS
1
"bcoD . e SMCLKOFF

XT20FF XT2Sx

XT2IN T T T

XT20UT XT2 Oscillator
(supporting upto 16MHz)

5-6 FLL+ Clock Module

Figure 5-4. MSP430x41x2 Frequency-Locked Loop

*IN

i

AuT

FLL DMhx
Iiterual TT
Lap | MLECLE
asclEDT DuHer
e ACLEM
10
[~ LEsTiCLE] ACLE
OSSO FF W) ewTisy
XTS_FLL -
|]
ov d———
i @oE0 0 PUC
T T SELNI
o _II Exrabk PReze
I ET10M - — CPUOFF
_ _ 1041
LFxT1 Dacligtor Freque woy —
WO ARKRF hegEnr
AN+ -
SCG1 FMx
T %1 41
aft
oC DED
Geye gar Mody BT
DCORLUS
1
Dl Her L SMCLKOFF
RE-NT
o
Tocon 0 EMCLE

FLL+ Clock Module 5-7

FLL+ Clock Module Operation

5.2 FLL+ Clock Module Operation

5.2.1

5-8

After a PUC, MCLK and SMCLK are sourced from DCOCLK at 32 times the
ACLK frequency. When a 32768-Hz crystal is used for ACLK, MCLK and
SMCLK stabilize to 1.048576 MHz.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure
the MSP430 operating modes and enable or disable components of the FLL+
clock module. See Chapter System Resets, Interrupts and Operating Modes.
The SCFQCTL, SCFI0, SCFI1, FLL_CTLO, and FLL_CTL1 registers configure
the FLL+ clock module. The FLL+ can be configured or reconfigured by
software at any time during program execution.

Example, MCLK = 64 x ACLK = 2097152

BIC #GIE, SR ; Disable interrupts

MOV.B #(64-1),&SCFQTL ; MCLK = 64 * ACLK, DCOPLUS=0
MOV.B #FN_2, &SCFIO ; Select DCO range

BIS #GIE, SR ; Enable interrupts

FLL+ Clock features for Low-Power Applications

Conflicting requirements typically exist in battery-powered MSP430x4xx
applications:

(1 Low clock frequency for energy conservation and time keeping

(1 High clock frequency for fast reaction to events and fast burst processing
capability

(O Clock stability over operating temperature and supply voltage

The FLL+ clock module addresses the above conflicting requirements by
allowing the user to select from the three available clock signals: ACLK, MCLK,
and SMCLK. For optimal low-power performance, the ACLK can be
configured to oscillate with a low-power 32786-Hz watch-crystal, providing a
stable time base for the system and low-power standby operation. The MCLK
can be configured to operate from the on-chip DCO, stabilized by the FLL, and
can activate when requested by interrupt events.

The digital frequency-locked loop provides decreased start-time and
stabilization delay over an analog phase-locked loop. A phase-locked loop
takes hundreds or thousands of clock cycles to start and stabilize. The FLL
starts immediately at its previous setting.

FLL+ Clock Module

FLL+ Clock Module Operation

5.2.2 Internal Very Low-Power, Low-Frequency Oscillator

The internal very low-power, low-frequency oscillator (VLO) provides a typical
frequency of 12kHz (see device-specific data sheet for parameters) without
requiring a crystal. VLOCLK source is selected by setting LFXT1Sx = 10 when
XTS_FLL = 0. The OSCOFF bit disables the VLO for LPM4. The LFXT1 crystal
oscillators are disabled when the VLO is selected reducing current
consumption. The VLO consumes no power when not being used.

5.2.3 LFXT1 Oscillator

The LFXT1 oscillator supports ultralow-current consumption using a
32,768-Hz watch crystal in LF mode (XTS_FLL = 0). A watch crystal connects
to XIN and XOUT without any external components.

The LFXT1 oscillator supports high-speed crystals or resonators when in HF
mode (XTS_FLL = 1). The high-speed crystal or resonator connects to XIN
and XOUT.

LFXT1 may be used with an external clock signal on the XIN pin when
XTS_FLL = 1. The input frequency range is ~1 Hz to 8 MHz. When the input
frequency is below 450 kHz, the XT1OF bit may be set to prevent the CPU from
being clocked from the external frequency.

The software-selectable XCAPxPF bits configure the internally provided load
capacitance for the LFXT1 crystal. The internal pin capacitance plus the
parasitic 2-pF pin capacitance combine serially to form the load capacitance.
The load capacitance can be selected as 1, 6, 8, or 10 pF. Additional external
capacitors can be added if necessary.

Software can disable LFXT1 by setting OSCOFF if this signal does not source
MCLK (SELM # 3 or CPUOFF =1).

Note: LFXT1 Oscillator Characteristics

Low-frequency crystals often require hundreds of milliseconds to start up,
depending on the crystal.

Ultralow-power oscillators such as the LFXT1 in LF mode should be guarded
from noise coupling from other sources. The crystal should be placed as
close as possible to the MSP430 with the crystal housing grounded and the
crystal traces guarded with ground traces.

The default value of XCAPxPF is 0, providing a crystal load capacitance of
~1 pF. Reliable crystal operation may not be achieved unless the crystal is
provided with the proper load capacitance, either by selection of XCAPxPF
values or by external capacitors.

FLL+ Clock Module 5-9

FLL+ Clock Module Operation

5.2.4 XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK
and its characteristics are identical to LFXT1 in HF mode, except XT2 does not
have internal load capacitors. The required load capacitance for the
high-frequency crystal or resonator must be provided externally.

The XT20OFF bit disables the XT2 oscillator if XT2CLK is unused for MCLK
(SELMx = 2 or CPUOFF = 1) and SMCLK (SELS = 0 or SMCLKOFF = 1).

XT2 may be used with external clock signals on the XT2IN pin. When used with
an external signal, the external frequency must meet the data sheet
parameters for XT2.

If there is only one crystal in the system it should be connected to LFXT1. Using
only XT2 causes the LFOF fault flag to remain set, not allowing for the OFIFG
to ever be cleared.

XT2 Oscillator in MSP430x47x3/4 and MSP430F471xx Devices

5-10

The MSP430x47x3/4 and MSP430F471xx devices have a second crystal
oscillator (XT2) that supports crystals up to 16 MHz. XT2 sources XT2CLK.
The XT2Sx bits select the range of operation of XT2. The XT2OFF bit disables
the XT2 oscillator, if XT2CLK is not used for MCLK or SMCLK as described
above.

XT2 may be used with external clock signals on the XT2IN pin when
XT2Sx = 11. When used with an external signal, the external frequency must
meet the data sheet parameters for XT2. When the input frequency is below
the specified lower limit, the XT20OF bit may be set to prevent the CPU from
being clocked with XT2CLK.

If there is only one crystal with a frequency below 8 MHz in the system, it should
be connected to LFXT1. Using only XT2 causes the LFOF fault flag to remain
set, not allowing for the OFIFG to ever be cleared.

FLL+ Clock Module

FLL+ Clock Module Operation

5.2.5 Digitally Controlled Oscillator (DCO)

The DCO is an integrated ring oscillator with RC-type characteristics. The
DCO frequency is stabilized by the FLL to a multiple of ACLK as defined by
N, the lowest 7 bits of the SCFQCTL register.

The DCOPLUS bit sets the fpcocLk frequency to fpco or fpcop- The FLLDx
bits configure the divider, D, to 1, 2, 4, or 8. By default, DCOPLUS = 0 and
D = 2, providing a clock frequency of fpco/e on fpcocLk-

The multiplier (N+1) and D set the frequency of DCOCLK.

DCOPLUS = 0: fpcocLk = (N + 1) x facLk
DCOPLUS = 1: fpcock =D x (N + 1) x facLk

DCO Frequency Range

The frequency range of fpgo is selected with the FNx bits as listed in
Table 5-1. The range control allows the DCO to operate near the center of the
available taps for a given DCOCLK frequency. The user must ensure that
MCLK does not exceed the maximum operating frequency. See the
device-specific data sheet for parameters.

Table 5-1.DCO Range Control Bits

FN_.8 FN_4 FN_3 FN_2 Typical fpco Range
0 0 0 0 0.6510 6.1
0 0 0 1 1.3to 121
0 0 1 X 2t017.9
0 1 X 2.81026.6
1 X X 4.2to0 46

5.2.6 Frequency Locked Loop (FLL)

The FLL continuously counts up or down a 10-bit frequency integrator. The
output of the frequency integrator that drives the DCO can be read in SCFI1
and SCFIO. The count is adjusted +1 or —1 with each ACLK crystal period.

Five of the integrator bits, SCFI1 bits 7-3, set the DCO frequency tap.
Twenty-nine taps are implemented for the DCO (28, 29, 30, and 31 are
equivalent), and each is approximately 10% higher than the previous. The
modulator mixes two adjacent DCO frequencies to produce fractional taps.
SCFI1 bits 2-0 and SCFIO0 bits 1-0 are used for the modulator.

The DCO starts at the lowest tap after a PUC or when SCFIO and SCFI1 are
cleared. Time must be allowed for the DCO to settle on the proper tap for
normal operation. 32 ACLK cycles are required between taps requiring a worst
case of 28 x 32 ACLK cycles for the DCO to settle.

FLL+ Clock Module 5-11

FLL+ Clock Module Operation

5.2.7 DCO Modulator

The modulator mixes two adjacent DCO frequencies to produce an
intermediate effective frequency and spread the clock energy, reducing
electromagnetic interference (EMI). The modulator mixes the two adjacent
frequencies across 32 DCOCLK clock cycles.

The error of the effective frequency is zero every 32 DCOCLK cycles and does
not accumulate. The modulator settings and DCO control are automatically
controlled by the FLL hardware. Figure 5-5 illustrates the modulator
operation.

Figure 5-5. Modulator Patterns

5-12

Npcomod

31 |_
8 e e W e e e I e e M
Hplipigipigigipipipipipinininipips

16
LUy
; [[T Il [
, [[[[
5 [] [[
, [] [
Lower DCO Tap Frequency fpco Upper DCO Tap Frequency fpco.1
1 | |
0

v

fiococLk) Cycles, Shown for f(DCOCLK)=f(ACLK) x 32
One ACLK Cycle

A
v

FLL+ Clock Module

FLL Operation from Low-Power Modes

5.2.8 Disabling the FLL Hardware and Modulator

The FLL is disabled when the status register bit SCGO = 1. When the FLL is
disabled, the DCO runs at the previously selected tap and DCOCLK is not
automatically stabilized.

The DCO modulator is disabled when SCFQ_M = 1. When the DCO modulator
is disabled, the DCOCLK is adjusted to the nearest of the available DCO taps.

5.2.9 FLL Operation from Low-Power Modes

An interrupt service request clears SCG1, CPUOFF, and OSCOFF if set but
does not clear SCGO. This means that FLL operation from within an interrupt
service routine entered from LPM1, 2, 3, or 4, the FLL remains disabled and
the DCO operates at the previous setting as defined in SCFI0 and SCFIA1.
SCGO can be cleared by user software if FLL operation is required.

5.2.10 Buffered Clock Output

ACLK may be divided by 1, 2, 4, or 8 and buffered out of the device on P1.5.
The division rate is selected with the FLL_DIV bits.

The ACLK output is multiplexed with other pin functions. When multiplexed,
the pin must be configured for the ACLK output.

BIS.B #BIT5, &P1SEL ; Select ACLK/n signal as
; output for port P1.5
BIS.B #BIT5,&P1DIR ; Select port P1.5 to ACLK/n

; signal for output

FLL+ Clock Module 5-13

Buffered Clock Output

5.2.11 FLL+ Fail-Safe Operation

The FLL+ module incorporates an oscillator-fault fail-safe feature. This feature
detects an oscillator fault for LFXT1, DCO and XT2 as shown in Figure 5-6.
The available fault conditions are:

(1 Low-frequency oscillator fault (LFOF) for LFXT1 in LF mode
(1 High-frequency oscillator fault (XT1OF) for LFXT1 in HF mode
(1 High-frequency oscillator fault (XT20F) for XT2

(1 DCO fault flag (DCOF) for the DCO

The crystal oscillator fault bits LFOF, XT1OF and XT20F are set if the
corresponding crystal oscillator is turned on and not operating properly. The
fault bits remain set as long as the fault condition exists and are automatically
cleared if the enabled oscillators function normally. During a LFXT1crystal
failure, no ACLK signal is generated and the FLL+ continues to count down to
zero in an attempt to lock ACLK and MCLK/(Dx[N+1]). The DCO tap moves
to the lowest position (SCFI1.7 to SCFI1.3 are cleared) and the DCOF is set.
A DCOF is also generated if the N-multiplier value is set too high for the
selected DCO frequency range resulting the DCO tap to move to the highest
position (SCFI1.7 to SCFI1.3 are set). The DCOF is cleared automatically if
the DCO tap is not in the lowest or the highest positions.

The OFIFG oscillator-fault interrupt flag is set and latched at POR or when an
oscillator fault (LFOF, XT10F, XT20F, or DCOF set) is detected. When OFIFG
is set, MCLK is sourced from the DCO, and if OFIE is set, the OFIFG requests
an NMI interrupt. When the interrupt is granted, the OFIE is reset
automatically. The OFIFG flag must be cleared by software. The source of the
fault can be identified by checking the individual fault bits.

When OFIFG is set and MCLK is automatically switched to the DCO, the
SELMXx bit settings are not changed. This condition must be handled by user
software.

Note: DCO Active During Oscillator Fault

DCOCLK is active even at the lowest DCO tap. The clock signal is available
for the CPU to execute code and service an NMI during an oscillator fault.

Figure 5-6. Oscillator Fault Logic

- Oescillator Fault --------------------——-»

DCO Fault
LF_OscFault —

XTS_FLL .—E

XT1_OscFault —
XT2_OscFault

Set OFIFG Flag

L

5-14 FLL+ Clock Module

FLL+ Clock Module Registers

5.3 FLL+ Clock Module Registers

The FLL+ registers are listed in Table 5-2.

Table 5-2.FLL+ Registers

Register Short Form Register Type Address Initial State

System clock control SCFQCTL Read/write 052h 01Fh with PUC
System clock frequency integrator 0 SCFI0 Read/write 050h 040h with PUC
System clock frequency integrator 1 SCFI1 Read/write 051h Reset with PUC
FLL+ control register 0 FLL_CTLO Read/write 053h 003h with PUC
FLL+ control register 1 FLL_CTLA Read/write 054h Reset with PUC
FLL+ control register 21 FLL_CTL2 Read/write 055h Reset with PUC
SFR interrupt enable register 1 IE1 Read/write 000h Reset with PUC
SFR interrupt flag register 1 IFG1 Read/write 002h Reset with PUC

T MSP430F41x2, MSP430F47x3/4, and MSP430F471xx devices only.

FLL+ Clock Module 5-15

FLL+ Clock Module Registers

SCFQCTL, System Clock Control Register

7 6 5 4 3 2 1 0
SCFQ_M N
rw-0 rw-0 rw-0 rw-1 rw-1 rw-1 rw-1 rw-1

SCFQ_M Bit 7 Modulation. This enables or disables modulation.
0 Modulation enabled
1 Modulation disabled
N Bits Multiplier. These bits set the multiplier value for the DCO. N must be > 0 or
6-0 unpredictable operation results.
When DCOPLUS = 0: fDCOCLK= (N + 1) . fcrystal
When DCOPLUS = 1: fococLk = D x (N+1)- fcrystal

SCFI0, System Clock Frequency Integrator Register 0

7 6 5 4 3 2 1 0
FLLDx FN_x MODx (LSBs)
rw—-0 rw—1 rw—-0 rw-0 rw—-0 rw—-0 rw—-0 rw—-0
FLLDx Bits FLL+ loop divider. These bits divide fpcocLk in the FLL+ feedback loop.
7-6 This results in an additional multiplier for the multiplier bits. See also
multiplier bits.
00 71
01 /2
10 /4
11 /8
FN_x Bits DCO range control. These bits select the fpco operating range.

5-2 0000 0.65to0 6.1 MHz
0001 1.3to 12.1 MHz
001x 210 17.9 MHz
01xx 2.8 to 26.6 MHz
1xxx 4.2 to 46 MHz

MODx Bits Least significant modulator bits. Bit 0 is the modulator LSB. These bits
1-0 affect the modulator pattern. All MODx bits are modified automatically by
the FLL+.

5-16 FLL+ Clock Module

SCFI1, System Clock Frequency Integrator Register 1

FLL+ Clock Module Registers

7 6 5 4 3 2 1 0
DCOx MODx (MSBs)
rw—-0 rw—-0 rw—-0 rw—-0 rw—-0 rw—-0 rw—-0 rw—-0
DCOx Bits These bits select the DCO tap and are modified automatically by the FLL+.
7-3
MODx Bit 2 Most significant modulator bits. Bit 2 is the modulator MSB. These bits

affect the modulator pattern. All MODXx bits are modified automatically by

the FLL+.

FLL+ Clock Module 5-17

FLL+ Clock Module Registers

FLL_CTLO, FLL+ Control Register 0

7 6 5 4 3 2 1 0
DCOPLUS XTS_FLL XCAPxPF XT20Ft XT10OF LFOF DCOF
rw—-0 rw—-0 rw—-0 rw-0 r-0 r-0 r—(1) r-1

T Not present in MSP430x41x, MSP430x42x devices

DCOPLUS

XTS_FLL

XCAPxPF

XT20F

XT10OF

LFOF

DCOF

Bit 7

Bit 6

Bit 3

Bit 2

Bit 1

Bit 0

DCO output pre-divider. This bit selects if the DCO output is pre-divided
before sourcing MCLK or SMCLK. The division rate is selected with the
FLL_D bits

0 DCO output is divided

1 DCO output is not divided

LFTX1 mode select
0 Low frequency mode
1 High frequency mode

Oscillator capacitor selection. These bits select the effective capacitance
seen by the LFXT1 crystal or resonator. Should be set to 00 if the
high-frequency mode is selected for LFXT1 with XTS_FLL = 1.

00 ~1pF
01 ~6pF
10 ~8pF
11 ~10pF

XT2 oscillator fault. Not present in MSP430x41x, and MSP430x42x
devices.

0 No fault condition present

1 Fault condition present

LFXT1 high-frequency oscillator fault
0 No fault condition present
1 Fault condition present

LFXT1 low-frequency oscillator fault
0 No fault condition present
1 Fault condition present

DCO oscillator fault
0 No fault condition present
1 Fault condition present

5-18 FLL+ Clock Module

FLL+ Clock Module Registers

FLL_CTL1, FLL+ Control Register 1

7 6 5 4 3 2 1 0
LFxTiDiG: | SMCLK | xT20FFt SELMxt SELSt FLL_DIVx
rw—-0 rw—-0 rw—(1) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

T Not present in MSP430x41x, MSP430x42x devices except MSP430F41x2.
1 Only supported by MSP430xG46x, MSP430FG47x, MSP430F47x, MSP430x47x3/4, and MSP430F471xx devices. Otherwise

unused.

LFXT1DIG

SMCLKOFF

XT20FF

SELMx

SELS

FLL_DIVx

Bit 7

Bit 6

Bit 5

Bits

Bit 2

Select digital external clock source. This bit enables the input of an
external digital clock signal on XIN in low-frequency mode (XTS_FLL = 0).
Only supported in MSP430xG46x, MSP430FG47x, MSP430F47x,
MSP430x47x3/4, and MSP430F471xx devices.

0 Crystal input selected

1 Digital clock input selected

SMCLK off. This bit turns off SMCLK. Not present in MSP430x41x and
MSPx42x devices.
0 SMCLK is on
1 SMCLK is off

XT2 off. This bit turns off the XT2 oscillator. Not present in MSP430x41x
and MSPx42x devices.

0 XT2is on

1 XT2 is off if it is not used for MCLK or SMCLK

Select MCLK. These bits select the MCLK source. Not present in
MSP430x41x and MSP430x42x devices except MSP430F41x2.
00 DCOCLK

01 DCOCLK

10 XT2CLK

11 LFXT1CLK

In the MSP430F41x2 devices:

00 DCOCLK

01 DCOCLK

10 LFXT1CLK or VLO

11 LFXT1CLK or VLO

Select SMCLK. This bit selects the SMCLK source. Not present in
MSP430x41x and MSP430x42x devices.

0 DCOCLK
1 XT2CLK
ACLK divider
o0 M

o1 /2

10 /4

1 /8

FLL+ Clock Module 5-19

FLL+ Clock Module Registers

FLL_CTL2, FLL+ Control Register 2
(MSP430x47x3/4, and MSP430F471xx devices only)

7 6 5 4 3 2 1 0
XT2Sx Reserved
rw—-0 rw—-0 r0 r0 r0 r0 r0 r0
XT2Sx Bits XT2 range select. These bits select the frequency range for XT2.
7-6 00 0.4 to 1-MHz crystal or resonator

01 1 to 3-MHz crystal or resonator
10 3 to 16-MHz crystal or resonator
11 Digital external 0.4 to 16-MHz clock source

Reserved Bits Reserved.
5-0

FLL_CTL2, FLL+ Control Register 2
(MSP430F41x2 devices only)

7 6 5 4 3 2 1 0
Reserved LFXT1Sx Reserved
r0 r0 rw—-0 rw—-0 r0 r0 r0 r0
Reserved Bits Reserved.
7-6
LFXT1Sx Bits Low-frequency clock select and LFXT1 range select. These bits select

5-4 between LFXT1 and VLO when XTS_FLL = 0.

When XTS_FLL =0:

00 32768-Hz crystal on LFXT1
01 Reserved

10 VLOCLK

11 Digital external clock source
When XTS_FLL = 1:

00 Reserved

01 Reserved

10 Reserved

11 Reserved

Reserved Bits Reserved.
3-0

5-20 FLL+ Clock Module

FLL+ Clock Module Registers

IE1, Interrupt Enable Register 1

6 5 4 3 2 1 0
OFIE
rw—-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-2
OFIE Bit 1 Oscillator fault interrupt enable. This bit enables the OFIFG interrupt.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV . B
or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled
Bits 0 This bit may be used by other modules. See device-specific data sheet.

FLL+ Clock Module 5-21

FLL+ Clock Module Registers

IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0
OFIFG
rw—-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-2
OFIFG Bit 1 Oscillator fault interrupt flag. Because other bits in IFG1 may be used for other
modules, it is recommended to set or clear this bit using BIS.B or BIC.B
instructions, rather than MOV . B or CLR. B instructions.
0 No interrupt pending
1 Interrupt pending
Bits 0 This bit may be used by other modules. See device-specific data sheet.

5-22

FLL+ Clock Module

Chapter 6

Flash Memory Controller

This chapter describes the operation of the MSP430 flash memory controller.

Topic Page
6.1 Flash Memory Introduction..............ccoiiiiiiiiiiiininnnnns 6-2
6.2 Flash Memory Segmentationccciiiiiiiiinnn... 6-4
6.3 FlashMemory Operationoiiiiiiiiiiiiiiinnrnnnnnns 6-6
6.4 Flash Memory Registersccoiiiiiiiiiiinnnennnnnnnnns 6-21

6-1

Flash Memory Introduction

6.1 Flash Memory Introduction

The MSP430 flash memory is bit-, byte-, and word-addressable and
programmable. The flash memory module has an integrated controller that
controls programming and erase operations. The controller has three or four
registers (see the device-specific data sheet), a timing generator, and a
voltage generator to supply program and erase voltages.

MSP430 flash memory features include:

[Internal programming voltage generation
(1 Bit, byte, or word programmable

(1 Ultralow-power operation

(1 Segment erase and mass erase

(1 Marginal 0 and marginal 1 read mode (implemented in MSP430FG47x,

MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices only (see
the device-specific data sheet).

The block diagram of the flash memory and controller is shown in Figure 6-1.

Note: Minimum V¢c During Flash Write or Erase

The minimum Vg voltage during a flash write or erase operation is between
2.2V and 2.7 V (see the device-specific data sheet). If Vg falls below the
minimum V¢ during a write or erase, the result of the write or erase is
unpredictable.

6-2 Flash Memory Controller

Flash Memory Introduction

Figure 6-1. Flash Memory Module Block Diagram

i MAB e {T
L Jdc Iz 3

FCTLA | 2 Address Latch

Jr 3¢t > Data Latch
FCTL2 Enable
Address

i L i E Latch
FCTL3
Flash Flash
Timing Memory Memory
1-
Generator Enable Array 1 Array 2
Data Latch
4
Programming
Voltage
Generator

1 MSP430FG461x devices only

Flash Memory Controller 6-3

Flash Memory Segmentation

6.2 Flash Memory Segmentation

MSP430FG461x devices have two flash memory arrays. Other MSP430x4xx
devices have one flash array. All flash memory is partitioned into segments.
Single bits, bytes, or words can be written to flash memory, but the segment
is the smallest size of flash memory that can be erased.

The flash memory is partitioned into main and information memory sections.
There is no difference in the operation of the main and information memory
sections. Code or data can be located in either section. The differences
between the two sections are the segment size and the physical addresses.

The information memory has four 64-byte segments on the MSP430FG47x,
MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices or two
128-byte segments on all other MSP430x4xx devices. The main memory has
two or more 512-byte segments. See the device-specific data sheet for the
complete memory map of a device.

The segments are further divided into blocks.

Figure 6-2 shows the flash segmentation using an example of 4-KB flash that
has eight main segments and two information segments.

Figure 6-2. Flash Memory Segments, 4-KB Example

FFFFh

FOO0Oh
10FFh

1000h

6-4

4 KB + 256 byte

xxFFh
FFFFh Segment0 Block
4-kbyte FEQOh XxCoh
Flash FDEFh xxBFh
. Block
Main Memory FCO0h Segment1 xx80h
xx7Fh
Segment2 Xx40h Block
256-byte xx3Fh Block
Flash Segment3 xx00h o¢
Information Memory
Segment4
Segment5
Segment6
FOOOh Segment7
10FFh
SegmentA
1000h SegmentB

Flash Memory Controller

Flash Memory Segmentation

6.2.1 SegmentA on MSP430FG47x, MSP430F47x, MSP430F47x3/4, and
MSP430F471xx Devices

On MSP430FG47x, MSP430F47x, MSP430F47x3/4, and MSP430F471xx
devices, SegmentA of the information memory is locked separately from all
other segments with the LOCKA bit. When LOCKA = 1, SegmentA cannot be
written or erased and all information memory is protected from erasure during
a mass erase or production programming. When LOCKA = 0, SegmentA can
be erased and written as any other flash memory segment, and all information
memory is erased during a mass erase or production programming.

The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to
LOCKA has no effect. This allows existing flash programming routines to be
used unchanged.

; Unlock SegmentA

BIT #LOCKA, &FCTL3 ; Test LOCKA

Jz SEGA_UNLOCKED ; Already unlocked?

MOV #FWKEY+LOCKA, &FCTL3 ; No, unlock SegmentA
SEGA UNLOCKED ; Yes, continue

; SegmentA is unlocked

; Lock SegmentA

BIT #LOCKA, &FCTL3 ; Test LOCKA

JINZ SEGALOCKED ; Already locked?

MOV #FWKEY+LOCKA, &FCTL3 ; No, lock SegmentA
SEGA LOCKED ; Yes, continue

; SegmentA is locked

Flash Memory Controller 6-5

Flash Memory Operation

6.3 Flash Memory Operation

6.3.1

The default mode of the flash memory is read mode. In read mode, the flash
memory is not being erased or written, the flash timing generator and voltage
generator are off, and the memory operates identically to ROM.

MSP430 flash memory is in-system programmable (ISP) without the need for
additional external voltage. The CPU can program its own flash memory. The
flash memory write/erase modes are selected with the BLKWRT, WRT,
GMERAS, MERAS, and ERASE bits and are:

(1 Byte/word write
Block write
Segment erase

Mass erase (all main memory segments)

U 0 o U

All erase (all segments)

Reading or writing to flash memory while it is being programmed or erased is
prohibited. If CPU execution is required during the write or erase, the code to
be executed must be in RAM. Any flash update can be initiated from within
flash memory or RAM.

Flash Memory Timing Generator

Write and erase operations are controlled by the flash timing generator shown
in Figure 6-3. The flash timing generator operating frequency, ferg, must be
in the range from ~ 257 kHz to ~ 476 kHz (see device-specific data sheet).

Figure 6-3. Flash Memory Timing Generator Block Diagram

6-6

ACLK
MCLK
SMCLK
SMCLK

FSSELx
FN5 weeeeeeen FNO PUC EMEX
5 ! I 1T
o1 Fre) Reset
10 Divider, 1-64
Flash Timing Generator
1

i

BUSY WAIT

The flash timing generator can be sourced from ACLK, SMCLK, or MCLK. The
selected clock source should be divided using the FNx bits to meet the
frequency requirements for frrg. If the frrg frequency deviates from the
specification during the write or erase operation, the result of the write or erase
may be unpredictable, or the flash memory may be stressed above the limits
of reliable operation.

Flash Memory Controller

Flash Memory Operation

6.3.2 Erasing Flash Memory

The erased level of a flash memory bit is 1. Each bit can be programmed from
1 to 0 individually but to reprogram from 0 to 1 requires an erase cycle. The
smallest amount of flash that can be erased is a segment. Erase modes are
selected with the GMERAS (MSP430FG461x devices), MERAS, and ERASE
bits listed in Table 6-1, Table 6-2, and Table 6-3.

Table 6-1.MSP430FG461x Erase Modes

GMERAS MERAS ERASE Erase Mode
X 0 1 Segment erase
0 1 0 Mass erase (all main memory segments of

selected memory array)

0 1 1 Erase all flash memory (main and
information segments of selected memory
array)

1 1 0 Global mass erase (all main memory

segments of both memory arrays)

1 1 1 Erase main memory and information
segments of both memory arrays

Table 6-2.MSP430FG47x, MSP430F47x, MSP430F47x3/4, and F471xx Erase Modes

MERAS ERASE Erase Mode
0 1 Segment erase
1 0 Mass erase (all main memory segments)
1 1 LOCKA = 0: Erase main and information flash memory.

LOCKA = 1: Erase only main flash memory.

Table 6-3.Erase Modes

MERAS ERASE Erase Mode
0 1 Segment erase
1 0 Mass erase (all main memory segments)
1 1 Erase all flash memory (main and information segments)

Any erase is initiated by a dummy write into the address range to be erased.
The dummy write starts the flash timing generator and the erase operation.
Figure 6—4 shows the erase cycle timing. The BUSY bit is set immediately after
the dummy write and remains set throughout the erase cycle. BUSY, GMERAS
(when present), MERAS, and ERASE are automatically cleared when the
cycle completes. The erase cycle timing is not dependent on the amount of
flash memory present on a device. Erase cycle times are device-specific (see
the device-specific data sheet).

Flash Memory Controller 6-7

Flash Memory Operation

Figure 6-4. Erase Cycle Timing

: I | .
! Erase Operation Active

Generate Remove
Programming Voltage Programming Voltage

| Erase Time, Vg Current Consumption is Increased !
ladl »
™~ gl

|
BUSY . o
| tMass Erase, ISeg Erase, O tGlobal Mass Erase (S€€ device-specific data sheet) I

A dummy write to an address not in the range to be erased does not start the
erase cycle, does not affect the flash memory, and is not flagged in any way.
This errant dummy write is ignored.

6-8 Flash Memory Controller

Flash Memory Operation

Initiating an Erase from Within Flash Memory

Any erase cycle can be initiated from within flash memory or from RAM. When
a flash segment erase operation is initiated from within flash memory, all timing
is controlled by the flash controller, and the CPU is held while the erase cycle
completes. After the erase cycle completes, the CPU resumes code execution
with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase
the code needed for execution after the erase. If this occurs, CPU execution
is unpredictable after the erase cycle.

The flow to initiate an erase from flash is shown in Figure 6-5.

Figure 6-5. Erase Cycle from Within Flash Memory

Disable watchdog

v

Setup flash controller and erase
mode

v

Dummy write

v

Set LOCK=1, re-enable watchdog

; Segment Erase from flash. 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = O.

MOV #WDTPW+WDTHOLD, &WDTCTL ; Disable WDT

MOV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/2

MOV #HFWKEY, &FCTL3 ; Clear LOCK

MOV #FWKEY+ERASE, &FCTL1 ; Enable segment erase
CLR &0FC10h ; Dummy write, erase S1
MOV #FWKEY+LOCK, &FCTL3 ; Done, set LOCK

; Re-enable WDT?

Flash Memory Controller 6-9

Flash Memory Operation

Initiating an Erase from RAM

Any erase cycle may be initiated from RAM. In this case, the CPU is not held
and can continue to execute code from RAM. The BUSY bit must be polled to
determine the end of the erase cycle before the CPU can access any flash
address again. If a flash access occurs while BUSY = 1, it is an access
violation, ACCVIFG is set, and the erase results are unpredictable.

The flow to initiate an erase from RAM is shown in Figure 6-6.

Figure 6-6. Erase Cycle from Within RAM

Disable watchdog

Setup flash controller and
erase mode

Dummy write

o

Set LOCK = 1, re-enable
watchdog

; Segment Erase from RAM. 514 kHz
; Assumes ACCVIE = NMIIE = OFIE = O.

SMCLK < 952 kHz

N

MOV #WDTPW+WDTHOLD, &WDTCTL ; Disable WDT
L1 BIT #BUSY, &FCTL3 ; Test BUSY

JNZ Ll ; Loop while busy

MOV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/2

MOV HFWKEY, &FCTL3 ; Clear LOCK

MOV HFWKEY+ERASE, &FCTL1 ; Enable erase

CLR &0FC10h ; Dummy write, erase S1
L2 BIT #BUSY, &FCTL3 ; Test BUSY

JNZ L2 ; Loop while busy

MOV #FWKEY+LOCK, &FCTL3 ; Done, set LOCK
; Re-enable WDT?

6-10 Flash Memory Controller

Flash Memory Operation

6.3.3 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bits, are listed in
Table 6-4.

Table 6-4. Write Modes

Byte/Word Write

BLKWRT WRT Write Mode
0 1 Byte/word write
1 1 Block write

Both write modes use a sequence of individual write instructions, but using the
block write mode is approximately twice as fast as byte/word mode, because
the voltage generator remains on for the complete block write. Any instruction
that modifies a destination can be used to modify a flash location in either
byte/word mode or block-write mode. A flash word (low + high byte) must not
be written more than twice between erasures. Otherwise, damage can occur.

The BUSY bit is set while a write operation is active and cleared when the
operation completes. If the write operation is initiated from RAM, the CPU must
not access flash while BUSY = 1. Otherwise, an access violation occurs,
ACCVIFG is set, and the flash write is unpredictable.

A byte/word write operation can be initiated from within flash memory or from
RAM. When initiating from within flash memory, all timing is controlled by the
flash controller, and the CPU is held while the write completes. After the write
completes, the CPU resumes code execution with the instruction following the
write. The byte/word write timing is shown in Figure 6-7.

Figure 6-7. Byte/Word Write Timing

|
BUSY . .
_I tword (see device-specific data sheet)

? %
4 %
: I I :
Ih—Pﬂ—Pﬁ—Pl. - - |
Generate Programming Operation Active Rem_ove
Programming Voltage Programming Voltage

Programming Time, V¢ Current Consumption is Increased

l¢
|‘

I___‘L__

When a byte/word write is executed from RAM, the CPU continues to execute
code from RAM. The BUSY bit must be zero before the CPU accesses flash
again, otherwise an access violation occurs, ACCVIFG is set, and the write
result is unpredictable.

Flash Memory Controller 6-11

Flash Memory Operation

In byte/word mode, the internally generated programming voltage is applied
to the complete 64-byte block each time a byte or word is written for tworp
minus threefgrg cycles. With each byte or word write, the amount of time the
block is subjected to the programming voltage accumulates. The cumulative
programming time, tcpt, must not be exceeded for any block. If the cumulative
programming time is met, the block must be erased before performing any
further writes to any address within the block. See the device-specific data

sheet for specifications.

Initiating a Byte/Word Write from Within Flash Memory

The flow to initiate a byte/word write from flash is shown in Figure 6-8.

Figure 6-8. Initiating a Byte/Word Write from Flash

6-12

Disable watchdog

v

Setup flash controller
and set WRT=1

v

Write byte or word

v

Set WRT=0, LOCK=1,
re-enable watchdog

; Byte/word write from flash. 514 kHz < SMCLK < 952 kHz

; Assumes OFF1Eh is already erased

; Assumes ACCVIE = NMIIE = OFIE =
MOV #WDTPW+WDTHOLD, &WDTCTL
MOV #FWKEY+FSSEL1+FNO, &FCTL2
MOV #FWKEY, &FCTL3
MOV #FWKEY+WRT, &FCTL1
MOV #0123h, &0FF1Eh
MOV #FWKEY, &FCTL1
MOV #FWKEY+LOCK, &FCTL3

Flash Memory Controller

Disable WDT

SMCLK/ 2

Clear LOCK

Enable write
0123h -> OFF1Eh
Done. Clear WRT
Set LOCK
Re-enable WDT?

Initiating a Byte/Word Write from RAM

Flash Memory Operation

The flow to initiate a byte/word write from RAM is shown in Figure 6-9.

Figure 6-9. Initiating a Byte/Word Write from RAM

Disable watchdog

R

Setup flash controller

and set WRT=1

N

Write byte or word

o

Set WRT=0, LOCK =1

re-enable watchdog

1
7

1

Ll

L2

Byte/word write from RAM.

MOV
BIT
JNZ
MOV
MOV
MOV
MOV
BIT
JNZ
MOV
MOV

NMIIE = OFIE
#WDTPW+WDTHOLD, &WDTCTL
#BUSY, &FCTL3

Ll

514 kHz
Assumes OFF1Eh is already erased
Assumes ACCVIE =

#FWKEY+FSSEL1+FNO, & FCTL2

#FWKEY, &FCTL3
#FWKEY+WRT, &FCTL1
#0123h, &0FF1Eh
#BUSY, &FCTL3

L2

#FWKEY, &FCTL1
#FWKEY+LOCK, &FCTL3

Flash Memory Controller

< SMCLK < 952 kHz

Disable WDT

Test BUSY

Loop while busy
SMCLK/2

Clear LOCK
Enable write
0123h -> OFF1Eh
Test BUSY

Loop while busy
Clear WRT

Set LOCK
Re-enable WDT?

6-13

Flash Memory Operation

Block Write

The block write can be used to accelerate the flash write process when many
sequential bytes or words need to be programmed. The flash programming
voltage remains on for the duration of writing the 64-byte block. The
cumulative programming time tcpt must not be exceeded for any block during
a block write.

A block write cannot be initiated from within flash memory. The block write
must be initiated from RAM only. The BUSY bit remains set throughout the
duration of the block write. The WAIT bit must be checked between writing
each byte or word in the block. When WAIT is set the next byte or word of the
block can be written. When writing successive blocks, the BLKWRT bit must
be cleared after the current block is complete. BLKWRT can be set initiating
the next block write after the required flash recovery time given by tgng. BUSY
is cleared following each block write completion indicating the next block can
be written. Figure 6—10 shows the block write timing; see device-specific data
sheet for specifications.

Figure 6-10. Block-Write Cycle Timing

BLKWRT bit

_

Write to Flash e.g., MOV #123h, &Flash

¢ v

1L /L l-
| ~ - F- ~ J

d -l ‘lA
T] | Vl‘ »
I
|

l Ll
Programming Operation Active
] I

I
I
I I
I I
. - | - I
Cumulative Programming Time tcpr ~=< 10ms, V¢ Current Consumption is Increased
|
T
I
I
I

L
1, [
T

Generate
Programming Voltage
|

/L
/£

1/ 77

T T
| |
| |
| |
tBlock, 0 " tBlock 1-63 " tBlock, 1-63 1Block End

WAIT |[€— —» |

A

6-14 Flash Memory Controller

Flash Memory Operation

Block Write Flow and Example

A block write flow is shown in Figure 6—11 and in the following example.

Figure 6-11. Block Write Flow

Disable watchdog

Setup flash controller

g

A

Set BLKWRT=WRT=1

>

A

Write byte or word

Set BLKWRT=0

Set WRT=0, LOCK=1
re-enable WDT

Flash Memory Controller 6-15

Flash Memory Operation

; Write one block starting at 0FO000h.

; Must be executed from RAM, Assumes Flash is already erased.
; 514 kHz < SMCLK < 952 kHz

; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #32,R5 ; Use as write counter
MOV #0F000h,R6 ; Write pointer
MOV #WDTPW+WDTHOLD, &WDTCTL ; Disable WDT
L1 BIT #BUSY, &FCTL3 ; Test BUSY
JNZ Ll ; Loop while busy
MOV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/2
MOV #FWKEY, &FCTL3 ; Clear LOCK
MOV #FWKEY+BLKWRT+WRT, &FCTL1 ; Enable block write
L2 MOV Write Value, 0 (R6) ; Write location
L3 BIT #WAIT, &FCTL3 ; Test WAIT
JZ L3 ; Loop while WAIT=0
INCD R6 ; Point to next word
DEC R5 ; Decrement write counter
JINZ L2 ; End of block?
MOV #FWKEY, &FCTL1 ; Clear WRT,BLKWRT
L4 BIT #BUSY, &FCTL3 ; Test BUSY
JNZ L4 ; Loop while busy
MOV #FWKEY+LOCK, &FCTL3 ; Set LOCK

; Re-enable WDT if needed

6-16 Flash Memory Controller

Flash Memory Operation

6.3.4 Flash Memory Access During Write or Erase

When any write or any erase operation is initiated from RAM and while
BUSY =1, the CPU may not read or write to or from any flash location.
Otherwise, an access violation occurs, ACCVIFG is set, and the result is
unpredictable. Also if a write to flash is attempted with WRT = 0, the ACCVIFG
interrupt flag is set, and the flash memory is unaffected.

When a byte/word write or any erase operation is initiated from within flash
memory, the flash controller returns op-code 03FFFh to the CPU at the next
instruction fetch. Op-code 03FFFh is the JMP PC instruction. This causes the
CPU to loop until the flash operation is finished. When the operation is finished
and BUSY = 0, the flash controller allows the CPU to fetch the proper op-code
and program execution resumes.

The flash access conditions while BUSY=1 are listed in Table 6-5.

Table 6-5. Flash Access While BUSY = 1

Flash Flash WAIT Result
Operation Access
Read 0 ACCVIFG = 0. 03FFFh is the value read
Any erase or Write 0 ACCVIFG = 1. Write is ignored
byte/word write |\ iruction 0 ACCVIFG = 0. CPU fetches 03FFFh. This
fetch is the JMP PC instruction.
Any 0 ACCVIFG =1,LOCK =1
Read 1 ACCVIFG = 0, 03FFFh is the value read
Block write Write 1 ACCVIFG = 0, Flash is written
Instruction 1 ACCVIFG =1,LOCK =1
fetch

Interrupts are automatically disabled during any flash operation on F47x3/4
and F471xx devices when EEIl = 0 and EEIEX = 0 and on all other devices
where EEl and EEIEX are not present. After the flash operation has
completed, interrupts are automatically re-enabled. Any interrupt that
occurred during the operation will have its associated flag set and will generate
an interrupt request when re-enabled.

On F47x3/4 and F471xx devices when EEIEX = 1 and GIE = 1, an interrupt
will immediately abort any flash operation and the FAIL flag will be set. When
EEI =1, GIE = 1, and EEIEX = 0, a segment erase will be interrupted by a
pending interrupt every 32 ferg cycles. After servicing the interrupt, the
segment erase is continued for at least 32 fgrg cycles or until it is complete.
During the servicing of the interrupt, the BUSY bit remains set, but the flash
memory can be accessed by the CPU without causing an access violation.
Nested interrupts are not supported, because the RETI instruction is decoded
to detect the return from interrupt.

The watchdog timer (in watchdog mode) should be disabled before a flash
erase cycle. A reset aborts the erase and the result is unpredictable. After the
erase cycle has completed, the watchdog may be re-enabled.

Flash Memory Controller 6-17

Flash Memory Operation

6.3.5 Stopping a Write or Erase Cycle

Any write or erase operation can be stopped before its normal completion by
setting the emergency exit bit EMEX. Setting the EMEX bit stops the active
operation immediately and stops the flash controller. All flash operations
cease, the flash returns to read mode, and all bits in the FCTL1 register are
reset. The result of the intended operation is unpredictable.

6.3.6 Marginal Read Mode

The marginal read mode can be used to verify the integrity of the flash memory
contents. This feature is implemented in MSP430FG47x, MSP430F47Xx,
MSP430F47x3/4, and MSP430F471xx devices; see the device-specific data
sheet for availability. During marginal read mode, the presence of an
insufficiently programmed flash memory bit location can be detected. Events
that could produce this situation include improper frrg settings, violation of
minimum Vg during erase/program operations, and data retention
end-of-life. One method for identifying such memory locations would be to
periodically perform a checksum calculation over a section of flash memory
(for example, a flash segment) and then to repeat this procedure with the
marginal read mode enabled. If they do not match, it could indicate an
insufficiently programmed flash memory location. It is possible to refresh the
affected flash memory segment by disabling marginal read mode, copying to
RAM, erasing the flash segment, and copying back from RAM to flash.

The program checking the flash memory contents must be executed from
RAM. Executing code from flash automatically disables the marginal read
mode. The marginal read modes are controlled by the MRGO and MRG1 bits.
Setting MRG1 is used to detect insufficiently programmed flash cells
containing a “1* (erased bits). Setting MRGO is used to detect insufficiently
programmed flash cells containing a “0“ (programmed bits). Only one of these
bits should be set at a time. Therefore, a full marginal read check requires two
passes of checking the flash memory content’s integrity. During marginal read
mode, the flash access speed must be limited to 1 MHz (see device-specific
data sheet).

6.3.7 Configuring and Accessing the Flash Memory Controller

The FCTLx registers are 16-bit password-protected read/write registers. Any
read or write access must use word instructions and write accesses must
include the write password 0A5h in the upper byte. Any write to any FCTLx
register with any value other than 0A5h in the upper byte is a security key
violation, sets the KEYV flag, and triggers a PUC system reset. Any read of any
FCTLx registers reads 096h in the upper byte.

Any write to FCTL1 during an erase or byte/word write operation is an access
violation and sets ACCVIFG. Writing to FCTL1 is allowed in block write mode
when WAIT = 1, but writing to FCTL1 in block write mode when WAIT =0 is
an access violation and sets ACCVIFG.

Any write to FCTL2 when the BUSY = 1 is an access violation.

Any FCTLx register may be read when BUSY = 1. A read does not cause an
access violation.

6-18 Flash Memory Controller

Flash Memory Operation

6.3.8 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV and ACCVIFG.
ACCVIFG is set when an access violation occurs. When the ACCVIE bit is
re-enabled after a flash write or erase, a set ACCVIFG flag generates an
interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not
necessary for GIE to be set for ACCVIFG to request an interrupt. ACCVIFG
may also be checked by software to determine if an access violation occurred.
ACCVIFG must be reset by software.

The key violation flag KEYV is set when any of the flash control registers are
written with an incorrect password. When this occurs, a PUC is generated,
immediately resetting the device.

6.3.9 Programming Flash Memory Devices

There are three options for programming an MSP430 flash device. All options
support in-system programming:

(1 Program via JTAG
(1 Program via the bootstrap loader

(1 Program via a custom solution

Programming Flash Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface
requires four signals, ground, and optionally Vcc and RST/NMIL.

The JTAG port is protected with a fuse. Blowing the fuse completely disables
the JTAG port and is not reversible. Further access to the device via JTAG is
not possible For more details see the application report Programming a
Flash-Based MSP430 Using the JTAG Interface (SLAA149) at
www.ti.com/msp430.

Programming Flash Memory via the Bootstrap Loader (BSL)

Every MSP430 flash device contains a bootstrap loader. The BSL enables
users to read or program the flash memory or RAM using a UART serial
interface. Access to the MSP430 flash memory via the BSL is protected by a
256-bit, user-defined password. For more details see the application report
Features of the MSP430 Bootstrap Loader (SLAA089) at
www.ti.com/msp430.

Flash Memory Controller 6-19

Flash Memory Operation

Programming Flash Memory via a Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for
in-system and external custom programming solutions as shown in
Figure 6—12. The user can choose to provide data to the MSP430 through any
means available (UART, SPI, etc.). User-developed software can receive the
data and program the flash memory. Because this type of solution is developed
by the user, it can be completely customized to fit the application needs for
programming, erasing, or updating the flash memory.

Figure 6-12. User-Developed Programming Solution

Flash Memory
Commands, data, etc.

UART,

Host 7P mspa3o] Pxx, |—®| CPUexecutes |—p
< 4] SP, |« user software j——]

etc.

Read/write flash memory

6-20 Flash Memory Controller

6.4 Flash Memory Registers

The flash memory registers are listed in Table 6-6.

Table 6-6.Flash Memory Registers

Flash Memory Registers

Register Short Form Register Type Address Initial State

Flash memory control register 1 FCTL1 Read/write 0128h 09600h with PUC
Flash memory control register 2 FCTL2 Read/write 012Ah 09642h with PUC
Flash memory control register 3 FCTL3 Read/write 012Ch 09618ht with PUC
Flash memory control register 4% FCTL4 Read/write 01BEh 0000h with PUC
Interrupt enable 1 IE1 Read/write 000h Reset with PUC

T 09658h in MSP430FG47x, MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices
¥ MSP430FG47x, MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices only

Flash Memory Controller 6-21

Flash Memory Registers

FCTL1, Flash Memory Control Register

15 14 13 12 11 10 9 8

FRKEY, Read as 096h
FWKEY, Must be written as 0A5h

7 6 5 4 3 2 1 0
BLKWRT WRT Reserved | EEIEX: | GMERAST | yepag ERASE | Reserved
rw-0 rw—-0 ro r0 rw-0 rw—-0 rw-0 r0

T MSP430FG461x devices only. Reserved with r0 access on all other devices.
¥ F47x3/4 and F471xx devices only. Reserved with r0 access on all other devices.

FRKEY/ Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
FWKEY 15-8 is generated.

BLKWRT Bit 7 Block write mode. WRT must also be set for block write mode. BLKWRT is
automatically reset when EMEX is set.
0 Block-write mode is off
1 Block-write mode is on

WRT Bit 6 Write. This bit is used to select any write mode. WRT is automatically reset
when EMEX is set.
0 Write mode is off
1 Write mode is on

Reserved Bit 5 Reserved. Always read as O.

EEIEX Bit 4 Enable emergency interrupt exit. Setting this bit enables an interrupt to cause
an emergency exit from a flash operation when GIE = 1. EEIEX is
automatically reset when EMEX is set.

0 Exit interrupt disabled
1 Exit on interrupt enabled

EEI Bits 3 Enable erase Interrupts. Setting this bit allows a segment erase to be
interrupted by an interrupt request. After the interrupt is serviced, the erase
cycle is resumed.

0 Interrupts during segment erase disabled
1 Interrupts during segment erase enabled

6-22 Flash Memory Controller

Flash Memory Registers

GMERAS Bit 3 Global mass erase, mass erase, and erase. These bits are used together to
MERAS Bit 2 select the erase mode. GMERAS, MERAS, and ERASE are automatically

ERASE Bit 1 reset when EMEX is set or the erase operation completes.
GMERAS MERAS ERASE Erase Cycle
0 0 0 No erase
X 0 1 Erase individual segment only
0 1 0 Erase main memory segment of selected
array
0 1 1 Erase main memory segments and infor-

mation segments of selected array

1 1 0 Erase main memory segments of all
memory arrays.

1 1 1 Erase all main memory and information
segments of all memory arrays

Reserved Bit 0 Reserved. Always read as 0.

Flash Memory Controller 6-23

Flash Memory Registers

FCTL2, Flash Memory Control Register

15 14 13 12 11 10 9 8

FWKEYX, Read as 096h
Must be written as 0A5h

FSSELXx FNx ‘

rw-0 rw-1 rw-0 rw-0 rw-0 rw-0 rw-1 rw-0

FWKEYx Bits FCTLx password. Always read as 096h. Must be written as 0A5h, or a PUC
15-8 is generated.

FSSELx Bits Flash controller clock source select
7-6 00 ACLK
01 MCLK
10 SMCLK
11 SMCLK
FNx Bits Flash controller clock divider. These six bits select the divider for the flash
5-0 controller clock. The divisor value is FNx + 1. For example, when FNx = 00h,

Othe divisor is 1. When FNx = 03Fh the divisor is 64.

6-24 Flash Memory Controller

Flash Memory Registers

FCTL3, Flash Memory Control Register FCTL3

15 14 13 12 11 10 9 8
FWKEYX, Read as 096h
Must be written as 0A5h
7 6 5 4 3 2 1 0
FAILt LOCKAT EMEX LOCK WAIT ACCVIFG KEYV BUSY ‘
r(w)-0 r(w)-1 rw-0 rw-1 r-1 rw—-0 rw-(0) r(w)-0

t MSP430FG47x, MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices only.
Reserved with rO access on all other devices.

FWKEYx

FAIL

LOCKA

EMEX

LOCK

WAIT

ACCVIFG

Bits
15-8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

FCTLx password. Always read as 096h. Must be written as 0A5h, or a PUC
is generated.

Operation failure. This bit is set if the frrg clock source fails or if a flash
operation is aborted from an interrupt when EEIEX = 1. FAIL must be reset
with software.

0 No failure

1 Failure

SegmentA and Info lock. Write a 1 to this bit to change its state. Writing 0 has

no effect.

0 Segment A unlocked and all information memory is erased during a
mass erase.

1 Segment A locked and all information memory is protected from erasure
during a mass erase.

Emergency exit
0 No emergency exit
1 Emergency exit

Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit
can be set anytime during a byte/word write or erase operation and the
operation completes normally. In the block write mode, if the LOCK bit is set
while BLKWRT=WAIT=1, then BLKWRT and WAIT are reset, and the mode
ends normally.

0 Unlocked

1 Locked

Wait. Indicates the flash memory is being written.
0 The flash memory is not ready for the next byte/word write
1 The flash memory is ready for the next byte/word write

Access violation interrupt flag
0 No interrupt pending
1 Interrupt pending

Flash Memory Controller 6-25

Flash Memory Registers

KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password
was written to any flash control register and generates a PUC when set. KEYV
must be reset with software.

0 FCTLx password was written correctly
1 FCTLx password was written incorrectly

BUSY Bit 0 Busy. This bit indicates the status of the flash timing generator.
0 Not busy
1 Busy

6-26 Flash Memory Controller

Flash Memory Registers

FCTL4, Flash Memory Control Register FCTL4
(FG47x, FA7x, F47x3/4, and F471xx devices only)

15 14 13 12 11 10 9 8
FWKEYX, Read as 096h ‘
Must be written as 0A5h
7 6 5 4 3 2 1 0
MRGT1 MRGO ‘
r-0 r-0 rw-0 rw-0 r-0 r-0 r-0 r-0
FWKEYx Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
15-8 will be generated.
Reserved Bits Reserved. Always read as 0.
7-6
MRG1 Bit 5 Marginal read 1 mode. This bit enables the marginal 1 read mode. The
marginal read 1 bit is cleared if the CPU starts execution from the flash
memory. If both MRG1 and MRGO are set MRG1 is active and MRGO is
ignored.
0 Marginal 1 read mode is disabled.
1 Marginal 1 read mode is enabled.
MRGO Bit 4 Marginal read 0 mode. This bit enables the marginal 0 read mode. The
marginal mode 0 is cleared if the CPU starts execution from the flash memory.
If both MRG1 and MRGO are set MRG1 is active and MRGO is ignored.
0 Marginal O read mode is disabled.
1 Marginal O read mode is enabled.
Reserved Bits Reserved. Always read as 0.
3-0

Flash Memory Controller 6-27

Flash Memory Registers

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
ACCVIE
rw—-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-6,
4-0
ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the

ACCVIFG interrupt. Because other bits in IE1 may be used for other modules,
it is recommended to set or clear this bit using BIS.B or BIC.B instructions,
rather than MOV . B or CLR. B instructions.

0 Interrupt not enabled

1 Interrupt enabled

6-28 Flash Memory Controller

Chapter 7

Supply Voltage Supervisor

This chapter describes the operation of the SVS. The SVS is implemented in
all MSP430x4xx devices.

Topic Page
71 SVSintroductionccouiiiiii e 7-2
7.2 SVSOperationcviiiiiiiiiiiii it a e, 7-4
7.3 SVSRegisterscviiiiiiiiiiiiiiriianaiiiaaaaaaans 7-7

7-1

SVS Introduction

7.1 SVS Introduction

The supply voltage supervisor (SVS) is used to monitor the AVgc supply
voltage or an external voltage. The SVS can be configured to set a flag or
generate a POR reset when the supply voltage or external voltage drops below
a user-selected threshold.

The SVS features include:

AV monitoring

Selectable generation of POR

Output of SVS comparator accessible by software
Low-voltage condition latched and accessible by software

14 selectable threshold levels

U U o o dd

External channel to monitor external voltage

The SVS block diagram is shown in Figure 7-1.

Note: MSP430x412 and MSP430x413 Voltage Level Detect

The MSP430x412 and MSP430x413 devices implement only one voltage
level detect setting. When VLDx = 0, the SVS is off. Any value greater than
0 for VLDx selects a voltage level detect of 1.9V.

7-2 Supply Voltage Supervisor

Figure 7-1.SVS Block Diagram

VvCC

Brownout
Reset

A 4

SVS Introduction

SVSIN
—>
D—* SVS_POR
(D PIES .
tReset ~ 50us
. svsouT
D
G |s
Set SVSFG
L 2
T T Reset
VLD PORON SVSON SVSOP SVSFG
| | SVSCTL Bits

Supply Voltage Supervisor 7-3

SVS Operation

7.2 SVS Operation

The SVS detects if the AV voltage drops below a selectable level. It can be
configured to provide a POR or set a flag when a low-voltage condition occurs.
The SVS is disabled after a brownout reset to conserve current consumption.

7.2.1 Configuring the SVS

The VLDx bits are used to enable/disable the SVS and select one of 14
threshold levels (V(sys_jt—)) for comparison with AVgc. The SVS is off when
VLDx = 0 and on when VLDx > 0. The SVSON bit does not turn on the SVS.
Instead, it reflects the on/off state of the SVS and can be used to determine
when the SVS is on.

When VLDx = 1111, the external SVSIN channel is selected. The voltage on
SVSIN is compared to an internal level of approximately 1.2 V.

7.2.2 SVS Comparator Operation

A low-voltage condition exists when AV drops below the selected threshold
or when the external voltage drops below its 1.2-V threshold. Any low-voltage
condition sets the SVSFG bit.

The PORON bit enables or disables the device-reset function of the SVS. If
PORON = 1, a POR is generated when SVSFG is set. If PORON = 0, a
low-voltage condition sets SVSFG, but does not generate a POR.

The SVSFG bit is latched. This allows user software to determine if a
low-voltage condition occurred previously. The SVSFG bit must be reset by
user software. If the low-voltage condition is still present when SVSFG is reset,
it is immediately set again by the SVS.

7-4 Supply Voltage Supervisor

SVS Operation

7.2.3 Changing the VLDx Bits

When the VLDx bits are changed from zero to any non-zero value, there is an
automatic settling delay, tysvson), implemented that allows the SVS circuitry
to settle. The tqisvson) delay is approximately 50 us. During this delay, the SVS
does not flag a low-voltage condition or reset the device, and the SVSON bit
is cleared. Software can test the SVSON bit to determine when the delay has
elapsed and the SVS is monitoring the voltage properly. Writing to SVSCTL
while SVSON = 0 aborts the SVS automatic settling delay, tysvson), and
switch the SVS to active mode immediately. In doing so, the SVS circuitry
might not be settled, resulting in unpredictable behavior.

When the VLDx bits are changed from any non-zero value to any other
non-zero value, the circuitry requires the time tgetye to settle. The settling time
tsetile IS @ maximum of ~12 us (see the device-specific data sheet). There is
no automatic delay implemented that prevents SVSFG to be set or to prevent
a reset of the device. The recommended flow to switch between levels is
shown in the following code.

; Enable SVS for the first time:
MOV .B #080h, &SVSCTL ; Level 2.8V, do not cause POR

; Change SVS level
MOV .B #000h, &SVSCTL ; Temporarily disable SVS
MOV.B #018h, &SVSCTL ; Level 1.9V, cause POR

Supply Voltage Supervisor 7-5

SVS Operation

7.2.4 SVS Operating Range
Each SVS level has hysteresis to reduce sensitivity to small supply voltage
changes when AVgg is close to the threshold. The SVS operation and

SVS/Brownout interoperation are shown in Figure 7-2.

Figure 7-2. Operating Levels for SVS and Brownout/Reset Circuit

Software Sets VLD>0

L
vhysevs ity .~ NN__ ol N
Visvs Im-) | = = WsSVS I _ 2 - - - S g Ny oo
vV
(SVSstart) &Vhys(s,n_) ------------------
V(B_IT—) $::: _— 1 - P r k- E4a- C|— 1=
\f)C(starT) B O s
Brown- >
<_B|gévgniggt_> < Out »
Brownout Region
| T
0 +—1 —— >
t t
svsout d(BOR) <«—— SVSCircuit Active @~ ———» d(BOR)
1 T 1
0 . >
[>t
d(SVSon
Set SVS_POR () sl d(SVSR)
1 — — - —
0 >
|
undefined

7-6 Supply Voltage Supervisor

SVS Registers

7.3 SVS Registers
The SVS registers are listed in Table 7-1.
Table 7-1.SVS Registers

Register Short Form Register Type Address Initial State

SVS Control Register SVSCTL Read/write 056h Reset with BOR

SVSCTL, SVS Control Register

7 6 5 4 3 2 1 0
VLDx PORON SVSON SVSOP SVSFG
rw—0T rw—0t rw—0t rw—0t rw—0t rt rt rw—0t

T Reset by a brownout reset only, not by a POR or PUC.

VLDx Bits Voltage level detect. These bits turn on the SVS and select the nominal SVS
7-4 threshold voltage level. See the device-specific data sheet for parameters.
0000 SVS is off
0001 1.9V
0010 2.1V
0011 2.2V
0100 2.3V
0101 24V
0110 25V
0111 265V
1000 2.8V
1001 29V
1010 3.05
1011 3.2V
1100 3.35V
1101 3.5V
1110 3.7V
1111 Compares external input voltage SVSIN to 1.2 V.

PORON Bit 3 POR on. This bit enables the SVSFG flag to cause a POR device reset.
0 SVSFG does not cause a POR
1 SVSFG causes a POR

SVSON Bit 2 SVS on. This bit reflects the status of SVS operation. This bit DOES NOT turn
on the SVS. The SVS is turned on by setting VLDx > 0.
0 SVS is Off
1 SVSis On

SVSOP Bit 1 SVS output. This bit reflects the output value of the SVS comparator.

0 SVS comparator output is low
1 SVS comparator output is high

SVSFG Bit 0 SVS flag. This bit indicates a low voltage condition. SVSFG remains set after
a low voltage condition until reset by software.
0 No low voltage condition occurred
1 A low condition is present or has occurred

Supply Voltage Supervisor 7-7

7-8 Supply Voltage Supervisor

Chapter 8

16-Bit Hardware Multiplier

This chapter describes the 16-bit hardware multiplier. The hardware multiplier
is implemented in MSP430x44x, MSP430FE42x, MSP430FE42xA,

MSP430FE42x2, and MSP430F42x, MSP430F42xA devices.

Topic Page
8.1 Hardware Multiplier Introductioncccoiiiiiiiinnnt. 8-2
8.2 Hardware Multiplier Operationccciiiiiiiiiiinnnnnn. 8-3
8.3 Hardware Multiplier Registerscccciiiiiiiiiiiinnnnn. 8-7

8-1

Hardware Multiplier Introduction

8.1 Hardware Multiplier Introduction

The hardware multiplier is a peripheral and is not part of the MSP430 CPU.
This means that its activities do not interfere with the CPU activities. The
multiplier registers are peripheral registers that are loaded and read with CPU

instructions.

The hardware multiplier supports:

4
4
4
4
4

Unsigned multiply
Signed multiply
Unsigned multiply accumulate

Signed multiply accumulate

16x 16 bits, 16x8 bits, 8x 16 bits, 8x8 bits

The hardware multiplier block diagram is shown in Figure 8-1.

Figure 8-1. Hardware Multiplier Block Diagram

8-2

15

rw

MPY 130h

MPYS 132h

15

rw 0

MAC 134h

f‘> OP1

OP2 138h

~~

MACS 136h

S~

Accessible
Register

MPY = 0000

MACS MPYS

16 x 16 Multipiler

iﬁ

A N\

32-bit Adder /

MAC

MPY, MPYS

\ Multiplexer /

~~

\ 32-bit Multiplexer /

N~

SUMEXT 13Eh

s RESHI 13Ch

15

r

RESLO 13Ah

0 31 rw

rw 0

16-Bit Hardware Multiplier

Hardware Multiplier Operation

8.2 Hardware Multiplier Operation

The hardware multiplier supports unsigned multiply, signed multiply, unsigned
multiply accumulate, and signed multiply accumulate operations. The type of
operation is selected by the address the first operand is written to.

The hardware multiplier has two 16-bit operand registers, OP1 and OP2, and
three result registers, RESLO, RESHI, and SUMEXT. RESLO stores the low
word of the result, RESHI stores the high word of the result, and SUMEXT
stores information about the result. The result is ready in three MCLK cycles
and can be read with the next instruction after writing to OP2, except when
using an indirect addressing mode to access the result. When using indirect
addressing for the result, a NOP is required before the result is ready.

8.2.1 Operand Registers

The operand one register OP1 has four addresses, shown in Table 8-1, used
to select the multiply mode. Writing the first operand to the desired address
selects the type of multiply operation but does not start any operation. Writing
the second operand to the operand two register OP2 initiates the multiply
operation. Writing OP2 starts the selected operation with the values stored in
OP1 and OP2. The result is written into the three result registers RESLO,
RESHI, and SUMEXT.

Repeated multiply operations may be performed without reloading OP1 if the
OP1 value is used for successive operations. It is not necessary to re-write the
OP1 value to perform the operations.

Table 8-1.0P1 addresses

OP1 Address Register Name Operation

0130h MPY Unsigned multiply

0132h MPYS Signed multiply

0134h MAC Unsigned multiply accumulate
0136h MACS Signed multiply accumulate

16-Bit Hardware Multiplier 8-3

Hardware Multiplier Operation

8.2.2 Result Registers

The result low register RESLO holds the lower 16-bits of the calculation result.
The result high register RESHI contents depend on the multiply operation and
are listed in Table 8-2.

Table 8-2.RESHI Contents

Mode RESHI Contents
MPY Upper 16 bits of the result
MPYS The MSB is the sign of the result. The remaining bits are the

upper 15 bits of the result. Two’s complement notation is used
for the result.

MAC Upper 16 bits of the result

MACS Upper 16 bits of the result. Two’s complement notation is used
for the result.

The sum extension registers SUMEXT contents depend on the multiply
operation and are listed in Table 8-3.

Table 8-3.SUMEXT Contents

Mode SUMEXT
MPY SUMEXT is always 0000h
MPYS SUMEXT contains the extended sign of the result

00000h Result was positive or zero
OFFFFh Result was negative

MAC SUMEXT contains the carry of the result
0000h No carry for result
0001h Result has a carry

MACS SUMEXT contains the extended sign of the result
00000h Result was positive or zero
OFFFFh Result was negative

MACS Underflow and Overflow

The multiplier does not automatically detect underflow or overflow in the
MACS mode. The accumulator range for positive numbers is 0 to 7FFF FFFFh
and for negative numbers is OFFFF FFFFh to 8000 0000h. An underflow
occurs when the sum of two negative numbers yields a result that is in the
range for a positive number. An overflow occurs when the sum of two positive
numbers yields a result that is in the range for a negative number. In both of
these cases, the SUMEXT register contains the sign of the result, OFFFFh for
overflow and 0000h for underflow. User software must detect and handle
these conditions appropriately.

8-4 16-Bit Hardware Multiplier

Hardware Multiplier Operation

8.2.3 Software Examples

Examples for all multiplier modes follow. All 8x8 modes use the absolute
address for the registers, because the assembler does not allow .B access to
word registers when using the labels from the standard definitions file.

; 16x16 Unsigned Multiply
MOV #01234h, &MPY ; Load first operand
MOV #05678h, &0P2 ; Load second operand

; o ; Process results

; 8x8 Unsigned Multiply. Absolute addressing.
MOV.B #012h, &0130h ; Load first operand
MOV.B #034h,&0138h ; Load 2nd operand

; o ; Process results

; 16x16 Signed Multiply
MOV #01234h, &MPYS ; Load first operand
MOV #05678h, &0P2 ; Load 2nd operand

; C.. ; Process results

; 8x8 Signed Multiply. Absolute addressing.
MOV.B #012h,&0132h ; Load first operand

SXT &MPYS ; Sign extend first operand
MOV.B #034h,&0138h ; Load 2nd operand
SXT &0P2 ; Sign extend 2nd operand

; (triggers 2nd multiplication)
; . ; Process results

; 16x16 Unsigned Multiply Accumulate
MOV #01234h, &MAC ; Load first operand
MOV #05678h, &0P2 ; Load 2nd operand

; . ; Process results

; 8x8 Unsigned Multiply Accumulate. Absolute addressing
MOV.B #012h,&0134h ; Load first operand
MOV.B #034h,&0138h ; Load 2nd operand

; .. ; Process results

; 16x16 Signed Multiply Accumulate
MOV #01234h,&MACS ; Load first operand
MOV #05678h, &0P2 ; Load 2nd operand

; .. ; Process results

; 8x8 Signed Multiply Accumulate. Absolute addressing
MOV.B #012h,&0136h ; Load first operand

SXT &MACS ; Sign extend first operand
MOV.B #034h,R5 ; Temp. location for 2nd operand
SXT R5 ; Sign extend 2nd operand

MOV R5, &0P2 ; Load 2nd operand

; . ; Process results

16-Bit Hardware Multiplier 8-5

Hardware Multiplier Operation

8.24

8.2.5

8-6

Indirect Addressing of RESLO

When using indirect or indirect autoincrement addressing mode to access the
result registers, At least one instruction is needed between loading the second
operand and accessing one of the result registers.

; Access multiplier results with indirect addressing

MOV #RESLO, R5

MOV &0OPER1, &MPY
MOV &0OPER2, &0P2

NOP
MOV @R5+, &xXXX
MOV @R5, &xXxxX

Using Interrupts

1
1

I

RESLO address in R5 for indirect
Load 1lst operand

Load 2nd operand

Need one cycle

Move RESLO

Move RESHI

If an interrupt occurs after writing OP1 but before writing OP2, and the
multiplier is used in servicing that interrupt, the original multiplier mode
selection is lost and the results are unpredictable. To avoid this, disable
interrupts before using the hardware multiplier or do not use the multiplier in
interrupt service routines.

; Disable interrupts

DINT
NOP

MOV #xxh, &MPY ;

MOV #xxh, &OP2
EINT

16-Bit Hardware Multiplier

1
I
I

I

before using the hardware multiplier

Disable interrupts
Required for DINT
Load 1lst operand

Load 2nd operand

Interrupts may be enable before

Process results

Hardware Multiplier Registers

8.3 Hardware Multiplier Registers

The hardware multiplier registers are listed in Table 8-4.

Table 8-4.Hardware Multiplier Registers

Register Short Form Register Type Address Initial State
Operand one - multiply MPY Read/write 0130h Unchanged
Operand one - signed multiply MPYS Read/write 0132h Unchanged
Operand one - multiply accumulate MAC Read/write 0134h Unchanged
Operand one - signed multiply accumulate MACS Read/write 0136h Unchanged
Operand two oP2 Read/write 0138h Unchanged
Result low word RESLO Read/write 013Ah Undefined
Result high word RESHI Read/write 013Ch Undefined
Sum Extension register SUMEXT Read 013Eh Undefined

16-Bit Hardware Multiplier 8-7

8-8 16-Bit Hardware Multiplier

Chapter 9

32-Bit Hardware Multiplier

This chapter describes the 32-bit hardware multiplier (MPY32) of the
MSP430x4xx family. The 32-bit hardware multiplier is implemented in
MSP430F47x3/4 and MSP430F471xx devices.

Topic Page
9.1 32-Bit Hardware Multiplier Introduction 9-2
9.2 32-Bit Hardware Multiplier Operationoovvvantn. 9-4
9.3 32-Bit Hardware Multiplier Registersccoiivinnn, 9-21

9-1

32-Bit Hardware Multiplier Introduction

9.1 32-Bit Hardware Multiplier Introduction

The 32-bit hardware multiplier is a peripheral and is not part of the MSP430
CPU. This means its activities do not interfere with the CPU activities. The
multiplier registers are peripheral registers that are loaded and read with CPU
instructions.

The hardware multiplier supports:
Unsigned multiply

Signed multiply

Unsigned multiply accumulate

Signed multiply accumulate

8-bit, 16-bit, 24-bit and 32-bit operands
Saturation

Fractional numbers

8-bit and 16-bit operation compatible with 16-bit hardware multiplier

I Ty ey N Ny A N

8-bit and 24-bit multiplications without requiring a “sign extend” instruction

The 32-bit hardware multiplier block diagram is shown in Figure 9-1.

9-2 32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Introduction

Figure 9-1. 32-Bit Hardware Multiplier Block Diagram

Accessible

Register MPY

MPYS
MAC
MACS

| mpysen | | wpPvsaL |

| mPysaH | | mPysaaL |

| macsH | | macaaL | OP2

| macsseH | [mAcsszL | | opH | | oPL |
31 {} 16 15 {} 0 31 {} 16 15 {} 0

OP1 (high word) OP1 (low word) OP2 (high word) OP2 (low word)

N N N N

16-bit Multiplexer / \ 16-bit Multiplexer

s N

—p 16 x 16 Multiplier
OP1_32 m]
OP2 32 m| ‘
MPYMx m%| Control }
MPYSAT m—| Logic \ 32-bit Adder /
MPYFRAC m|
MPYC m—| {}

\—7/ 32-bit De-Multiplexer \
W L N L

N L N L

4§\ 32-bit Multiplexer /

32-Bit Hardware Multiplier 9-3

32-Bit Hardware Multiplier Operation

9.2 32-Bit Hardware Multiplier Operation

The hardware multiplier supports 8-bit, 16-bit, 24-bit, and 32-bit operands with
unsigned multiply, signed multiply, unsigned multiply-accumulate, and signed
multiply-accumulate operations. The size of the operands are defined by the
address the operand is written to and if it is written as word or byte. The type
of operation is selected by the address the first operand is written to.

The hardware multiplier has two 32-bit operand registers, operand one OP1
and operand two OP2, and a 64-bit result register accessible via registers
RESO to RESS. For compatibility with the 16x16 hardware multiplier the result
of a 8-bit or 16-bit operation is accessible via RESLO, RESHI, and SUMEXT,
as well. RESLO stores the low word of the 16x16-bit result, RESHI stores the
high word of the result, and SUMEXT stores information about the result.

The result of a 8-bit or 16-bit operation is ready in three MCLK cycles and can
be read with the next instruction after writing to OP2, except when using an
indirect addressing mode to access the result. When using indirect addressing
for the result, a NOP is required before the result is ready.

The result of a 24-bit or 32-bit operation can be read with successive
instructions after writing OP2 or OP2H starting with RESO0, except when using
an indirect addressing mode to access the result. When using indirect
addressing for the result, a NOP is required before the result is ready.

Table 9-1 summarizes when each word of the 64-bit result is available for the
various combinations of operand sizes. With a 32-bit wide second operand
OP2L and OP2H needs to be written. Depending on when the two 16-bit parts
are written the result availability may vary thus the table shows two entries, one
for OP2L written and one for OP2H written. The worst case defines the actual
result availability.

Table 9-1.Result Availability (MPYFRAC = 0; MPYSAT = 0)

Operation Result ready in MCLK cycles After
(OP1xOP2) RESO RES1 RES2 RES3 MPYC Bit
8/16x8/16 3 3 4 4 3 OP2 written
24/32 x 8/16 3 5 6 7 7 OP2 written
8/16 x 24/32 3 5 6 7 7 OP2L written
N/A 3 4 4 4 OP2H written
24/32 x24/32 3 8 10 1 1 OP2L written
N/A 3 5 6 6 OP2H written

9-4 32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

9.2.1 Operand Registers

Operand one OP1 has twelve registers, shown in Table 9-2, used to load data
into the multiplier and also select the multiply mode. Writing the low-word of
the first operand to a given address selects the type of multiply operation to
be performed but does not start any operation. When writing a second word
to a high-word register with suffix “32H" the multiplier assumes a 32-bit wide
OP1, otherwise 16-bits are assumed. The last address written prior to writing
OP2 defines the width of the first operand. For example, if MPY32L is written
first followed by MPY32H, all 32 bits are used and the data width of OP1 is set
to 32 bits. If MPY32H is written first followed by MPY32L, the multiplication will
ignore MPY32H and assume a 16-bit wide OP1 using the data written into
MPY32L.

Repeated multiply operations may be performed without reloading OP1 if the
OP1 value is used for successive operations. It is not necessary to rewrite the
OP1 value to perform the operations.

Table 9-2.0P1 registers

OP1 Register Name Operation

MPY Unsigned Multiply — operand bits O up to 15

MPYS Signed Multiply — operand bits 0 up to 15

MAC Unsigned Multiply Accumulate — operand bits 0 up to 15
MACS Signed Multiply Accumulate — operand bits 0 up to 15
MPY32L Unsigned Multiply — operand bits 0 up to 15

MPY32H Unsigned Multiply — operand bits 16 up to 31

MPYS32L Signed Multiply — operand bits O up to 15

MPYS32H Signed Multiply — operand bits 16 up to 31

MAC32L Unsigned Multiply Accumulate — operand bits 0 up to 15
MAC32H Unsigned Multiply Accumulate — operand bits 16 up to 31
MACS32L Signed Multiply Accumulate — operand bits O up to 15
MACS32H Signed Multiply Accumulate — operand bits 16 up to 31

Writing the second operand to the operand two register OP2 initiates the
multiply operation. Writing OP2 starts the selected operation with a 16-bit wide
second operand together with the values stored in OP1. Writing OP2L starts
the selected operation with a 32-bit wide second operand and the multiplier
expects a the high word to be written to OP2H. Writing to OP2H without a
preceding write to OP2L is ignored.

32-Bit Hardware Multiplier 9-5

32-Bit Hardware Multiplier Operation

Table 9-3.0P2 registers

9-6

OP2 Register Name Operation

OoP2 Start multiplication with 16-bit wide operand two OP2
(operand bits 0 up to 15)

OP2L Start multiplication with 32-bit wide operand two OP2
(operand bits 0 up to 15)

OP2H Continue multiplication with 32-bit wide operand two OP2
(operand bits 16 up to 31)

For 8-bit or 24-bit operands the operand registers can be accessed with byte
instructions. Accessing the multiplier with a byte instruction during a signed
operation will automatically cause a sign extension of the byte within the
multiplier module. For 24-bit operands only the high word should be written as
byte. Whether or not the 24-bit operands are sign extended is defined by the
register that is used to write the low word, because this register defines if the
operation is unsigned or signed.

The high word of a 32-bit operand remains unchanged when changing the size
of the operand to 16 bit either by modifying the operand size bits or by writing
to the respective operand register. During the execution of the 16-bit operation
the content of the high word is ignored.

Note: Changing of First or Second Operand During Multiplication

Changing OP1 or OP2 while the selected multiply operation is being
calculated will render any results invalid that are not ready at the time the new
operand(s) are changed.

Writing OP2 or OP2L will abort any ongoing calculation and start a new
operation. Results that are not ready at that time are invalid also for following
MAC or MACS operations.

Refer to the tables “Result Availability” for the different modes on how many
CPU cycles are needed until a certain result register is ready and valid.

32-Bit Hardware Multiplier

9.2.2 Result Registers

Table 9-4. SUMEXT Contents and MPYC Contents

32-Bit Hardware Multiplier Operation

The multiplication result is always 64-bits wide. It is accessible via registers
RESO to RES3. Used with a signed operation MPYS or MACS the results are
appropriately sign extended. If the result registers are loaded with initial values
before a MACS operation the user software must take care that the written
value is properly sign extended to 64 bits.

Note: Changing of Result Registers During Multiplication

The result registers must not be modified by the user software after writing
the second operand into OP2 or OP2L until the initiated operation is

completed.

In addition to RESO to RES3, for compatibility with the 16x16 hardware
multiplier the 32-bit result of a 8-bit or 16-bit operation is accessible via
RESLO, RESHI, and SUMEXT. In this case the result low register RESLO
holds the lower 16-bits of the calculation result and the result high register
RESHI holds the upper 16 bits. RES0 and RES1 are identical to RESLO and
RESHI, respectively, in usage and access of calculated results.

The sum extension registers SUMEXT contents depend on the multiply
operation and are listed in Table 9-4. If all operands are 16 bits wide or less
the 32-bit result is used to determine sign and carry. If one of the operands is
larger than 16 bits the 64-bit result is used.

The MPYC bit reflects the multiplier’s carry as listed in Table 9-4 and thus can
be used as 33rd or 65th bit of the result if fractional or saturation mode is not
selected. With MAC or MACS operations the MPYC bit reflects the carry of the
32-bit or 64-bit accumulation and is not taken into account for successive MAC
and MACS operations as the 33rd or 65th bit.

Mode SUMEXT MPYC

MPY SUMEXT is always 0000h MPYC is always 0

MPYS SUMEXT contains the extended sign of the result MPYC contains the sign of the result
00000h Result was positive or zero 0 Result was positive or zero
OFFFFh Result was negative 1 Result was negative

MAC SUMEXT contains the carry of the result MPYC contains the carry of the result
0000h No carry for result 0 No carry for result
0001h Result has a carry 1 Result has a carry

MACS SUMEXT contains the extended sign of the result MPYC contains the carry of the result

00000h Result was positive or zero
OFFFFh Result was negative

0 No carry for result,
1 Result has a carry

32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

MACS Underflow and Overflow

9-8

The multiplier does not automatically detect underflow or overflow in MACS
mode. For example working with 16-bit input data and 32-bit results, i.e. using
just RESLO and RESHI, the available range for positive numbers is 0 to
07FFF FFFFh and for negative numbers is OFFFF FFFFh to 08000 0000h. An
underflow occurs when the sum of two negative numbers yields a result that
is in the range for a positive number. An overflow occurs when the sum of two
positive numbers yields a result that is in the range for a negative number.

The SUMEXT register contains the sign of the result in both cases described
above, OFFFFh for a 32-bit overflow and 0000h for a 32-bit underflow. The
MPYC bit in MPY32CTLO can be used to detect the overflow condition. If the
carry is different than the sign reflected by the SUMEXT register an overflow
or underflow occurred. User software must handle these conditions
appropriately.

32-Bit Hardware Multiplier

9.2.3 Software Examples

32-Bit Hardware Multiplier Operation

Examples for all multiplier modes follow. All 8x8 modes use the absolute
address for the registers because the assembler will not allow .B access to
word registers when using the labels from the standard definitions file.

There is no sign extension necessary in software. Accessing the multiplier with
a byte instruction during a signed operation will automatically cause a sign
extension of the byte within the multiplier module.

1

32x32 Unsigned Multiply
MOV #01234h, &MPY32L ;
MOV #01234h, &MPY32H ;
MOV #05678h, &OP2L ;
MOV #05678h, &OP2H ;

I

l6x16 Unsigned Multiply
MOV #01234h, &MPY ;
MOV #05678h, &OP2 ;

I

Load low word of 1lst operand
Load high word of 1st operand
Load low word of 2nd operand
Load high word of 2nd operand
Process results

Load 1lst operand
Load 2nd operand
Process results

8x8 Unsigned Multiply. Absolute addressing.

MOV.B #012h, &MPY B ;
MOV.B #034h, &0P2 B ;

I

32x32 Signed Multiply

MOV #01234h, &MPYS32L
MOV #01234h, &MPYS32H
MOV #05678h, &OP2L ;
MOV #05678h, &OP2H ;

l6x1l6 Signed Multiply

MOV #01234h, &MPYS ;
MOV #05678h, &0P2 ;

I

Load 1lst operand
Load 2nd operand
Process results

; Load low word of 1st operand
; Load high word of 1st operand
Load low word of 2nd operand
Load high word of 2nd operand
Process results

Load 1lst operand
Load 2nd operand
Process results

8x8 Signed Multiply. Absolute addressing.

MOV.B #012h, &MPYS B ;
MOV.B #034h, &0P2_B ;

I

Load 1lst operand
Load 2nd operand
Process results

32-Bit Hardware Multiplier 9-9

32-Bit Hardware Multiplier Operation

9.2.4 Fractional Numbers

The 32-bit multiplier provides support for fixed-point signal processing. In
fixed—point signal processing, fractional number are represented by using a
fixed decimal point. To classify different ranges of decimal numbers, a
Q-format is used. Different Q-formats represent different locations of the
decimal point. Figure 9-2 shows the format of a signed Q15 number using 16
bits. Every bit after the decimal point has a resolution of 1/2, the most
significant bit is used as the sign bit. The most negative number is 08000h and
the maximum positive number is 07FFFh. This gives a range from —-1.0 to
0.999969482 = 1.0 for the signed Q15 format with 16 bits.

Figure 9-2. Q15 Format Representation

- 15 bits >
1011
Se% 48|16
N)
4

Decimal number equivalent

Decimal point
Sign bit

The range can be increased by shifting the decimal point to the right as shown
in Figure 9-3. The signed Q14 format with 16 bits gives a range from -2.0 to
1.999938965 = 2.0.

Figure 9-3. Q14 Format Representation

¢ 14 bits L

IR
21 4] 8|16

The benefit of using 16-bit signed Q15 or 32-bit signed Q31 numbers with
multiplication is that the product of two number in the range from -1.0 to 1.0
is always in that same range.

9-10 32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

Fractional Number Mode

Multiplying two fractional numbers using the default multiplication mode with
MPYFRAC = 0 and MPYSAT = 0 gives a result with 2 sign bits. For example
if two 16-bit Q15 numbers are multiplied a 32-bit result in Q30 format is
obtained. To convert the result into Q15 format manually, the first 15 trailing
bits and the extended sign bit must be removed. However, when the fractional
mode of the multiplier is used, the redundant sign bit is automatically removed
yielding a result in Q31 format for the multiplication of two 16-bit Q15 numbers.
Reading the result register RES1 gives the result as 16-bit Q15 number. The
32-bit Q31 result of a multiplication of two 32-bit Q31 numbers is accessed by
reading registers RES2 and RES3.

The fractional mode is enabled with MPYFRAC = 1 in register MPY32CTLO.
The actual content of the result register(s) is not modified when
MPYFRAC = 1. When the result is accessed using software, the value is
left—shifted 1 bit resulting in the final Q formatted result. This allows user
software to switch between reading both the shifted (fractional) and the
un-shifted result. The fractional mode should only be enabled when required
and disabled after use.

In fractional mode the SUMEXT register contains the sign extended bits 32
and 33 of the shifted result for 16x16-bit operations and bits 64 and 65 for
32x32-bit operations — not only bits 32 or 64, respectively.

The MPYC bit is not affected by the fractional mode. It always reads the carry
of the nonfractional result.

; Example using
; Fractional 16x16 multiplication

BIS #MPYFRAC, &MPY32CTLO ; Turn on fractional mode
MOV &FRACT1, &MPYS ; Load 1st operand as Q15
MOV &FRACT2, &0P2 ; Load 2nd operand as Q15
MOV &RES1, &PROD ; Save result as Q15

BIC #MPYFRAC, &MPY32CTLO ; Back to normal mode

Table 9-5.Result Availability in Fractional Mode (MPYFRAC = 1; MPYSAT = 0)

Operation Result ready in MCLK cycles After
(OP1xOP2) RESO RES1 RES2 RES3 MPYC Bit
8/16x8/16 3 3 4 4 3 OP2 written
24/32 x 8/16 3 5 6 7 7 OP2 written
8/16 x24/32 3 5 6 7 7 OP2L written
N/A 3 4 4 4 OP2H written
24/32 x24/32 3 8 10 1 1 OP2L written
N/A 3 5 6 6 OP2H written

32-Bit Hardware Multiplier 9-11

32-Bit Hardware Multiplier Operation

Saturation Mode

The multiplier prevents overflow and underflow of signed operations in
saturation mode. The saturation mode is enabled with MPYSAT = 1 in register
MPY32CTLO. If an overflow occurs the result is set to the most positive value
available. If an underflow occurs the result is set to the most negative value
available. This is useful to reduce mathematical artifacts in control systems on
overflow and underflow conditions. The saturation mode should only be
enabled when required and disabled after use.

The actual content of the result register(s) is not modified when MPYSAT = 1.
When the result is accessed using software, the value is automatically
adjusted providing the most positive or most negative result when an overflow
or underflow has occurred. The adjusted result is also used for successive
multiply—and—accumulate operations. This allows user software to switch
between reading the saturated and the non-saturated result.

With 16x16 operations the saturation mode only applies to the least significant
32 bits, i.e. the result registers RES0 and RES1. Using the saturation mode
in MAC or MACS operations that mix 16x16 operations with 32x32, 16x32 or
32x16 operations will lead to unpredictable results.

With 32x32, 16x32, and 32x16 operations the saturated result can only be
calculated when RES3 is ready. In non-5xx devices, reading RESO to RES2
prior to the complete result being ready will deliver the nonsaturated results,
independent of the MPYSAT bit setting.

Enabling the saturation mode does not affect the content of the SUMEXT
register nor the content of the MPYC bit.

; Example using

; Fractional 16x16 multiply accumulate with Saturation
; Turn on fractional and saturation mode:
BIS #MPYSAT+MPYFRAC, &MPY32CTLO

MOV &A1, &MPYS ; Load Al for 1lst term
MOV &K1, &0P2 ; Load K1 to get Al*K1l
MOV &A2, &MACS ; Load A2 for 2nd term
MOV &K2, &0P2 ; Load K2 to get A2*K2
MOV &RES1, &PROD ; Save Al*K1+A2*K2 as result

BIC #MPYSAT+MPYFRAC, &MPY32CTLO; turn back to normal

Table 9-6.Result Availability in Saturation Mode (MPYSAT = 1)

Operation Result ready in MCLK cycles after
(OP1 x0OP2) RESO RES1 RES2 RES3 MPYC Bit
8/16x8/16 3 3 N/A N/A 3 OP2 written
24/32 x 8/16 7 7 7 7 7 OP2 written
8/16 x 24/32 7 7 7 7 7 OP2L written
4 4 4 4 4 OP2H written
24/32 x 24/32 11 11 1 1 1 OP2L written
6 6 6 6 6 OP2H written

9-12 32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

Figure 9-4 shows the flow for 32-bit saturation used for 16x16 bit
multiplications and the flow for 64-bit saturation used in all other cases.
Primarily, the saturated results depends on the carry bit MPYC and the most
significant bit of the result. Secondly, if the fractional mode is enabled it
depends also on the two most significant bits of the unshift result; i.e., the result

that is read with fractional mode disabled.

Figure 9-4. Saturation Flow Chart

32-bit Saturation

MPYC=0 and

Overflow:
RES3 unchanged
RES2 unchanged

64-bit Saturation

MPYC=0 and

Overflow:
RES3 = 07FFFh
RES2 = OFFFFh

“”S'E‘;ﬁ%iES“ RES1 = 07FFFh “”S'EE‘?%EEES& RES1 = OFFFFh
= RESO = OFFFFh = RESO = OFFFFh
Underflow: Underflow:
_ RES3 unchanged _ RES3 = 08000h
r':’;f:i:ftijaE”; RES2 unchanged | » ur':"si?]fijaE”% RES2 = 00000h
S bit 1520 RES1 = 08000h e RES1 = 00000h
o= RESO = 00000h = RESO = 00000h
No
No No
MPYFRAC = 1 > MPYFRAC = 1
Yes
Overflow: Overflow:
. RES3 unchanged . Yes | RES3=07FFFh
unenifted REST, RES2 unchanged | » e e, s RES2=OFFFFh
bit 1401 FES] = 0pTm BT RES1 = OFFFFh
Hie= RESO = OFFFFh Hie= RESO = OFFFFh
No No
Y
Underflow: Underflow:
; Yes | RES3 unchanged . Yes | RES3 =08000h
e A, s RES2unchanged | > unenifted RESS, ™~ s RES2 = 00000N
Sy RES1 = 08000h Ay RES1 = 00000h
= RESO = 00000h = RESO = 00000h
No No

A 4

32-bit Saturation
completed

v
64-bit Saturation
completed

Note: Saturation in Fractional Mode

In case of multiplying —1.0 x —1.0 in fractional mode, the result of +1.0 is out

of range, thus, the saturated result gives the most positive result.

32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

9-14

The following example illustrates a special case showing the saturation
function in fractional mode. It also uses the 8-bit functionality of the MPY32
module.

; Turn on fractional and saturation mode,

; clear all other bits in MPY32CTLO:

MOV #MPYSAT+MPYFRAC, &MPY32CTLO

;Pre-load result registers to demonstrate overflow

MOV #0, &RES3 ;

MOV #0, &RES2 ;

MOV #07FFFh, &RES1 ;

MOV #0FA60h, &RESO ;

MOV.B #050h, &MACS B ; 8-bit signed MAC operation
MOV.B #012h, &0P2 B ; Start 16x16 bit operation
MOV &RESO,R6 ; R6 = OFFFFh
MOV &RES1,R7 ; R7 = 07FFFh

The result is saturated because already the result not converted into a
fractional number shows an overflow. The multiplication of the two positive
numbers 00050h and 00012h gives 005A0h. 005A0h added to 07FFF.FA60h
results in 8000.059F without MPYC being set. Since the MSB of the
unmodified result RES1 is 1 and MPYC = 0 the result is saturated according
to the saturation flow chart in Figure 9-4.

Note: Validity of Saturated Result

The saturated result is only valid if the registers RESO to RESS3, the size of
operands 1 and 2 and MPYC are not modified.

If the saturation mode is used with a preloaded result, user software must
ensure that MPYC in the MPY32CTLO register is loaded with the sign bit of
the written result otherwise the saturation mode erroneously saturates the
result.

32-Bit Hardware Multiplier

9.2.5 Putting It All Together

32-Bit Hardware Multiplier Operation

Figure 9-5 shows the complete multiplication flow depending on the various
selectable modes for the MPY32 module.

Figure 9-5. Multiplication Flow Chart

New Multiplication
started

Yes No
16x16
?
No Yes Yes
Yes
A l— MPYSAT=1 MPYSAT=1
? ?
Clear Result:
RES1 = 00000h 32-bit Saturation No No
RESO = 00000h

I

. ‘

A

64-bit Saturation

No

A

Clear Result:
RES3 = 00000h
RES2 = 00000h
RES1 = 00000h
RESO = 00000h

A
Pf&(;%m P1e6r;c;r6m Perform Perform
MPY or MPYS MAC or MACS M%C g:a'\t’i'gncs MF(’)Y g:a“t’i'srTS
Operation Operation P P
4 »
\ 4) 4
Yes Yes
MPYFRAC=1 MPYFRAC=1
? ?
? \ \ ?
No Shift 64-bit result. Shift 64-bit result. No
Calculate SUMEXT based on Calculate SUMEXT based on
MPYC and bit 15 of MPYC and bit 15 of
unshifted RES1. unshifted RES3.
Y Y
Yes Yes
MPYSAT=1 MPYSAT=1
? l i ?
No 32-bit Saturation 64-bit Saturation No
Multiplication
completed
32-Bit Hardware Multiplier 9-15

32-Bit Hardware Multiplier Operation

Given the separation in processing of 16-bit operations (32-bit results) and
32-bit operations (64-bit results) by the module, it is important to understand
the implications when using MAC/MACS operations and mixing 16-bit
operands/results with 32-bit operands/results. User software must address
these points during usage when mixing these operations. The following code
illustrates the issue.

; Mixing 32x24 multiplication with 16x16 MACS operation
MOV #MPYSAT, &MPY32CTLO; Saturation mode
MOV #052C5h, &MPY32L ; Load low word of 1lst operand
MOV #06153h, &MPY32H ; Load high word of 1st operand

MOV #001ABh, &0P2L ; Load low word of 2nd operand
MOV.B #023h, &0OP2H B ; Load high word of 2nd operand
;... 5 NOPs required
MOV &RESO,R6 ; R6 = 00E97h
MOV &RES1,R7 ; R7 = 0A6EAhQ
MOV &RES2,R8 ; R8 = 04F06h
MOV &RES3,R9 ; R9 = 0000Dh
; Note that MPYC = 0!
MOV #0CCC3h, &MACS ; Signed MAC operation
MOV #OFFB6h, &0P2 ; 16x16 bit operation
MOV &RESLO, R6 ; R6 = OFFFFh
MOV &RESHI,R7 ; R7 = 07FFFh

The second operation gives a saturated result because the 32-bit value used
for the 16x16 bit MACS operation was already saturated when the operation
was started: the carry bit MPYC was 0 from the previous operation but the most
significant bit in result register RES1 is set. As one can see in the flow chart
the content of the result registers are saturated for multiply-and-accumulate
operations after starting a new operation based on the previous results but
depending on the size of the result (32-bit or 64-bit) of the newly initiated
operation.

The saturation before the multiplication can cause issues if the MPYC bit is not
properly set as the following code example illustrates.

;Pre-load result registers to demonstrate overflow

MOV #0, &RES3 ;

MOV #0, &RES2 ;

MOV #0, &RES1 ;

MOV #0, &RESO ;

; Saturation mode and set MPYC:

MOV #MPYSAT+MPYC, &MPY32CTLO

MOV.B #082h, &MACS B ; 8-bit signed MAC operation
MOV.B #04Fh, &0P2 B ; Start 16x16 bit operation
MOV &RESO, R6 ; R6 = 00000h
MOV &RES1,R7 ; R7 = 08000h

9-16 32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

Even though the result registers were loaded with all zeros the final result is
saturated. This is because the MPYC bit was set causing the result used for
the multiply-and-accumulate to be saturated to 08000 0000h. Adding a
negative number to it would again cause an underflow thus the final result is
also saturated to 08000 0000h.

9.2.6 Indirect Addressing of Result Registers

When using indirect or indirect autoincrement addressing mode to access the
result registers and the multiplier requires 3 cycles until result availability
according to Table 9-1, at least one instruction is needed between loading the
second operand and accessing the result registers:

; Access multiplier 16x16 results with indirect addressing

MOV
MOV
MOV
NOP
MOV
MOV

#RESO,R5
&OPER1, &MPY
&OPER2, &0P2

@R5+, &xXXX
@R5, &xXxxX

I
I
I
I
I

I

RESO
Load
Load
Need
Move
Move

address in R5 for indirect
1st operand

2nd operand

one cycle

RESO

RES1

In case of a 32x16 multiplication there is also one instruction required between
reading the first result register RESO and the second result register RES1:

; Access multiplier 32x16 results with indirect addressing

MOV
MOV
MOV
MOV
NOP
MOV
NOP
MOV

MOV

#RESO,R5

&OPER1L, &MPY32L

&OPER1H, &MPY32H
&0OPER2, &0P2

@R5+, &xXXX

@R5, &xXxxX

@R5, &xXxxX

I
I
I

I

RESO
Load
Load
Load
Need
Move
Need

Move

address in R5 for indirect
low word of 1st operand
high word of 1st operand
2nd operand (16 bits)

one cycle

RESO

one additional cycle

RES1

No additional cycles required!

Move

RES2

32-Bit Hardware Multiplier 9-17

32-Bit Hardware Multiplier Operation

9.2.7 Using Interrupts

If an interrupt occurs after writing OP1, but before writing OP2, and the
multiplier is used in servicing that interrupt, the original multiplier mode
selection is lost and the results are unpredictable. To avoid this, disable
interrupts before using the hardware multiplier, do not use the multiplier in
interrupt service routines, or use the save and restore functionality of the 32-bit
multiplier.

; Disable interrupts before using the hardware multiplier
DINT ; Disable interrupts
NOP ; Required for DINT
MOV #xxh, &MPY ; Load 1lst operand
MOV #xxh, &OP2 ; Load 2nd operand
EINT ; Interrupts may be enabled before
; processing results if result
; registers are stored and restored in

; ilnterrupt service routines

9-18 32-Bit Hardware Multiplier

Save and Restore

32-Bit Hardware Multiplier Operation

If the multiplier is used in interrupt service routines its state can be saved and
restored using the MPY32CTLO register. The following code example shows
how the complete multiplier status can be saved and restored to allow
interruptible multiplications together with the usage of the muiltiplier in interrupt
service routines. Since the state of the MPYSAT and MPYFRAC bits are
unknown they should be cleared before the registers are saved as shown in
the code example.

; Interrupt service routine using multiplier
MPY USING ISR

PUSH
BIC

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

POP
POP

POP
POP
POP
POP
POP
POP
POP
reti

&MPY32CTLO

&RES3
&RES2
&RES1
&RESO
&MPY32H
&MPY32L
&0OP2H
&0OP2L

&0OP2L
&0OP2H

&MPY32L
&MPY32H
&RESO
&RES1
&RES2
&RES3
&MPY32CTLO

; Save multiplier mode, etc.
#MPYSAT+MPYFRAC, &§MPY32CTLO
; Clear MPYSAT+MPYFRAC

; Save
; Save
; Save
; Save
; Save
; Save
; Save

; Save

; Main

result
result
result
result
operand
operand
operand
operand

part of

3

2
1
0

ISR

high word
low word
high word
low word

; Using standard MPY routines

; Restore operand 2, low word

; Restore operand 2, high word

; Starts dummy multiplication but

; result is overwritten by

; following restore operations:

; Restore
; Restore
; Restore
; Restore
; Restore
; Restore
; Restore

result 0
result 1
result 2
result 3

operand 1, low word
operand 1, high word

multiplier mode, etc.

; End of interrupt service routine

32-Bit Hardware Multiplier 9-19

32-Bit Hardware Multiplier Operation

9.2.8 Using DMA

In devices with a DMA controller the multiplier can trigger a transfer when the
complete result is available. The DMA controller needs to start reading the
result with MPY32RESO successively up to MPY32RESS. Not all registers
need to be read. The trigger timing is such that the DMA controller starts
reading MPY32RESO when its ready and that the MPY32RES3 can be read
exactly in the clock cycle when it is available to allow fastest access via DMA.
The signal into the DMA controller is 'Multiplier ready’. Please refer to the DMA
user’s guide chapter for details.

9-20 32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Registers

9.3 32-Bit Hardware Multiplier Registers

The 32-bit hardware multiplier registers are listed in Table 9-7.

Table 9-7.32-bit Hardware Multiplier Registers

Register Short Form Register Address |Initial State
Type

16-bit operand one — multiply MPY Read/write 0130h Unchanged
8-bit operand one — multiply MPY_B Read/write 0132h Unchanged
16-bit operand one — signed multiply MPYS Read/write 0132h Unchanged
8-bit operand one - signed multiply MPYS_B Read/write 0132h Unchanged
16-bit operand one — multiply accumulate MAC Read/write 0134h Unchanged
8-bit operand one — multiply accumulate MAC_B Read/write 0134h Unchanged
16-bit operand one - signed multiply accumulate MACS Read/write 0136h Unchanged
8-bit operand one - signed multiply accumulate MACS_B Read/write 0136h Unchanged
16-bit operand two OoP2 Read/write 0138h Unchanged
8-bit operand two OP2_B Read/write 0138h Unchanged
16x16-bit result low word RESLO Read/write 013Ah Undefined

16x16-bit result high word RESHI Read/write 013Ch Undefined

16x16-bit sum extension register SUMEXT Read 013Eh Undefined

32-bit operand 1 — multiply — low word MPY32L Read/write 0140h Unchanged
32-bit operand 1 — multiply — high word MPY32H Read/write 0142h Unchanged
24-bit operand 1 — multiply — high byte MPY32H_B Read/write 0142h Unchanged
32-bit operand 1 - signed multiply — low word MPYS32L Read/write 0144h Unchanged
32-bit operand 1 - signed multiply — high word MPYS32H Read/write 0146h Unchanged
24-bit operand 1 - signed multiply — high byte MPYS32H_B Read/write 0146h Unchanged
32-bit operand 1 — multiply accumulate — low word MAC32L Read/write 0148h Unchanged
32-bit operand 1 — multiply accumulate — high word MAC32H Read/write 014Ah Unchanged

24-bit operand 1 — multiply accumulate — high byte MAC32H_B Read/write 014Ah Unchanged

32-bit operand 1 - signed multiply accumulate — low MACS32L Read/write 014Ch Unchanged
word

32-bit operand 1 - signed multiply accumulate — high MACS32H Read/write 014Eh Unchanged
word

24-bit operand 1 - signed multiply accumulate — high MACS32H_B Read/write 014Eh Unchanged
byte

32-bit operand 2 - low word OP2L Read/write 0150h Unchanged
32-bit operand 2 - high word OP2H Read/write 0152h Unchanged
24-bit operand 2 - high byte OP2H_B Read/write 0152h Unchanged
32x32-bit result 0 — least significant word RESO Read/write 0154h Undefined
32x32-bit result 1 RESH1 Read/write 0156h Undefined
32x32-bit result 2 RES2 Read/write 0158h Undefined
32x32-bit result 3 — most significant word RES3 Read/write 015Ah Undefined
MPY32 Control Register 0 MPY32CTLO Read/write 015Ch Undefined

32-Bit Hardware Multiplier 9-21

32-Bit Hardware Multiplier Registers

The registers listed in Table 9-8 are treated equally.

Table 9-8.Alternative Registers

Register Alternative 1 Alternative 2
16-bit operand one — multiply MPY MPY32L
8-bit operand one — multiply MPY_B MPYS32L_B
16-bit operand one — signed multiply MPYS MPYS32L
8-bit operand one — signed multiply MPYS_B MPYS32L_B
16-bit operand one — multiply accumulate MAC MAC32L
8-bit operand one — multiply accumulate MAC_B MAC32L_B
16-bit operand one — signed multiply accumulate MACS MACS32L
8-bit operand one — signed multiply accumulate MACS_B MACS32L_B
16x16-bit result low word RESLO RESO
16x16-bit result high word RESHI RES1

9-22 32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Registers

MPY32CTLO, 32-bit Multiplier Control Register 0

15 14 13 12 11 10 9 8
Reserved ‘
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
7 6 5 4 3 2 1 0
O'F‘,";_Ysz O'F‘,"r_vsz MPYMx MPYSAT | MPYFRAC | Reserved MPYC ‘
rw rw rw rw rw-0 rw-0 rw-0 rw
Reserved Bits Reserved
15-8
MPY Bit 7 Multiplier bit-width of operand 2
OP2_32 0 16 bits
1 32 bits
MPY Bit 6 Multiplier bit-width of operand 1.
OP1_32 0 16 bits
1 32 bits
MPYMx Bits Multiplier mode
5-4 00 MPY - Multiply
01 MPYS - Signed multiply
10 MAC - Multiply accumulate
11 MACS - Signed multiply accumulate
MPYSAT Bit 3 Saturation mode
0 Saturation mode disabled
1 Saturation mode enabled
MPYFRAC Bit2 Fractional mode
0 Fractional mode disabled
1 Fractional mode enabled
Reserved Bit 1 Reserved
MPYC Bit 0 Carry of the multiplier. It can be considered as 33rd or 65th bit of the result

if fractional or saturation mode is not selected because the MPYC bit does not
change when switching to saturation or fractional mode.
It is used to restore the SUMEXT content in MAC mode.

0 No carry for result
1 Result has a carry

32-Bit Hardware Multiplier

9-23

9-24 32-Bit Hardware Multiplier

Chapter 10

DMA Controller

The DMA controller module transfers data from one address to another
without CPU intervention. This chapter describes the operation of the DMA
controller. One DMA channel is implemented in MSP430FG43x and three
DMA channels are implemented in the MSP430FG461x and MSP430F471xx
devices.

Topic Page
10.1 DMA Introductionciiiiiiiiiiiiiiiiriinnnrannnnnns 10-2
10.2 DMA Operationc.couuuiiinneinnnninnnnrrrennnnnnnnnnnns 10-4
10.3 DMARBReQgIiStersciuiiiiii i iieiiiiinan e neennnnnnns 10-21

10-1

DMA Introduction

10.1 DMA Introduction

The direct memory access (DMA) controller transfers data from one address
to another, without CPU intervention, across the entire address range. For
example, the DMA controller can move data from the ADC12 conversion
memory to RAM.

Devices that contain a DMA controller may have one, two, or three DMA
channels available. Therefore, depending on the number of DMA channels
available, some features described in this chapter are not applicable to all
devices.

Using the DMA controller can increase the throughput of peripheral modules.
It can also reduce system power consumption by allowing the CPU to remain
in a low-power mode without having to awaken to move data to or from a
peripheral.

The DMA controller features include:

Up to three independent transfer channels
Configurable DMA channel priorities

Requires only two MCLK clock cycles per transfer
Byte or word and mixed byte/word transfer capability
Block sizes up to 65535 bytes or words
Configurable transfer trigger selections

Selectable edge or level-triggered transfer

Four addressing modes

U o0 uUduUdod

Single, block, or burst-block transfer modes

The DMA controller block diagram is shown in Figure 10-1.

10-2 DMA Controller

Figure 10-1. DMA Controller Block Diagram

DMAOTSELx
4
DMAREQ —] 0000
TACCR2_CCIFG —] 0001
TBCCR2_CCIFG —] 0010
Serial data received —] 0011
Serial transmit ready —| 0100
DAC12_0IFG —] 0101
ADC12IFGx —| 0110
TACCRO_CCIFG —| 0111
TBCCRO_CCIFG —] 1000
USART1 data received — 1001
USART1 transmit ready — 1010
Multiplier ready —| 1011
Serial data received —] 1100
Serial transmit ready —{ 1101
DMA2IFG — 1110

DMAEO — }

DMA1TSELx
4
DMAREQ —] 0000
TACCR2_CCIFG —] 0001
TBCCR2_CCIFG —] 0010
Serial data received —] 0011
Serial transmit ready —| 0100
DAC12_0IFG —{ 0101
ADC12IFGx —] 0110
TACCRO_CCIFG—] 0111
TBCCRO_CCIFG—] 1000
USART1 data received — 1001
USART1 transmit ready — 1010
Multiplier ready —| 1011
Serial data received —] 1100
Serial transmit ready —{ 1101
DMAOIFG — 1110
DMAEO — 1111

DMA2TSELx
4
DMAREQ —] 0000
TACCR2_CCIFG —] 0001
TBCCR2_CCIFG —] 0010
Serial data received —] 0011
Serial transmit ready —| 0100
DAC12_0IFG —{ 0101
ADC12IFGx —] 0110
TACCRO_CCIFG—] 0111
TBCCRO_CCIFG—] 1000
USART1 data received — 1001
USART1 transmit ready — 1010
Multiplier ready —| 1011
Serial data received —| 1100
Serial transmit ready — 1101
DMA1IFG — 1110

DMAEO — }

Halt

[01u0D puy Aoud YING

—= ROUNDROBIN

DMADSTINCRx DMADTx
2 |—l DMADSTBYTE 13

DMA Channel 0

DMAQSA

DMAODA

DMAOQSZ

2 t La DMASRSBYTE 4
DMASRCINCRx DMAEN

DMADSTINCRx DMADTXx
2 |—I DMADSTBYTE 13

DMA Channel 1

DMA1SA

DMA1DA

DMA1SZ

Qt L DMASRSBYTE l
DMASRCINCRx DMAEN

DMADSTINCRx DMADTXx
2 |—l DMADSTBYTE 13

DMA Channel 2

DMA2SA

DMA2DA

N
—>
>

DMA Introduction

JTAG Active

—<— NMI Interrupt Request
—& ENNMI

DMA2SZ

2 t La DMASRSBYTE 4
DMASRCINCRx DMAEN

—& DMAONFETCH

SN
4_ Address
B Space |
>
7%

L Halt CPU

DMA Controller

10-3

DMA Operation

10.2 DMA Operation

The DMA controller is configured with user software. The setup and operation
of the DMA is discussed in the following sections.

10.2.1 DMA Addressing Modes

The DMA controller has four addressing modes. The addressing mode for
each DMA channel is independently configurable. For example, channel 0
may transfer between two fixed addresses, while channel 1 transfers between
two blocks of addresses. The addressing modes are shown in Figure 10-2.
The addressing modes are:

(1 Fixed address to fixed address
(1 Fixed address to block of addresses
(1 Block of addresses to fixed address

(1 Block of addresses to block of addresses

The addressing modes are configured with the DMASRCINCRx and
DMADSTINCRx control bits. The DMASRCINCRXx bits select if the source
address is incremented, decremented, or unchanged after each transfer. The
DMADSTINCRx bits select if the destination address is incremented,
decremented, or unchanged after each transfer.

Transfers may be byte-to-byte, word-to-word, byte-to-word, or word-to-byte.
When transferring word-to-byte, only the lower byte of the source-word
transfers. When transferring byte-to-word, the upper byte of the
destination-word is cleared when the transfer occurs.

Figure 10-2. DMA Addressing Modes

10-4

ﬁ *7
DMA DMA
Controller Address Space Controller Address Space
Fixed Aadress To Fixed Address Fixed Address To Block Of Addresses
x | i —
DMA DMA
Controller Address Space Controller Address Space
Block Of Addresses To Fixed Address Block Of Addresses To Block Of Addresses

DMA Controller

DMA Operation

10.2.2 DMA Transfer Modes

The DMA controller has six transfer modes selected by the DMADTX bits as
listed in Table 10-1. Each channel is individually configurable for its transfer
mode. For example, channel 0 may be configured in single transfer mode,
while channel 1 is configured for burst-block transfer mode, and channel 2
operates in repeated block mode. The transfer mode is configured
independently from the addressing mode. Any addressing mode can be used
with any transfer mode.

Two types of data can be transferred selectable by the DMAXCTL DSTBYTE
and SRCBYTE fields. The source and/or destination location can be either
byte or word data. It is also possible to transfer byte to byte, word to word or
any combination.

Table 10-1. DMA Transfer Modes

DMADTXx Transfer Description
Mode

000 Single transfer Each transfer requires a trigger. DMAEN is
automatically cleared when DMAXSZ transfers have
been made.

001 Block transfer A complete block is transferred with one trigger.
DMAEN is automatically cleared at the end of the
block transfer.

010, 011 Burst-block CPU activity is interleaved with a block transfer.
transfer DMAEN is automatically cleared at the end of the
burst-block transfer.

100 Repeated Each transfer requires a trigger. DMAEN remains
single transfer enabled.

101 Repeated A complete block is transferred with one trigger.
block transfer DMAEN remains enabled.

110, 111 Repeated
burst-block
transfer

CPU activity is interleaved with a block transfer.
DMAEN remains enabled.

DMA Controller 10-5

DMA Operation

Single Transfer

In single transfer mode, each byte/word transfer requires a separate trigger.
The single transfer state diagram is shown in Figure 10-3.

The DMAXSZ register is used to define the number of transfers to be made.
The DMADSTINCRx and DMASRCINCRx bits select if the destination
address and the source address are incremented or decremented after each
transfer. If DMAXSZ = 0, no transfers occur.

The DMAXSA, DMAXDA, and DMAXSZ registers are copied into temporary
registers. The temporary values of DMAXSA and DMAXDA are incremented
or decremented after each transfer. The DMAXSZ register is decremented
after each transfer. When the DMAXSZ register decrements to zero it is
reloaded from its temporary register and the corresponding DMAIFG flag is
set. When DMADTx = 0, the DMAEN bit is cleared automatically when
DMAXSZ decrements to zero and must be set again for another transfer to
occur.

In repeated single transfer mode, the DMA controller remains enabled with
DMAEN = 1, and a transfer occurs every time a trigger occurs.

10-6 DMA Controller

Figure 10-3. DMA Single Transfer State Diagram

DMAEN =0

DMAEN =0
DMAREQ =0
T_Size - DMAxSZ

[DMADTx =0
AND DMAXSZ = 0]
OR DMAEN =0

[ENNMI =1
AND NMI event]
OR
[DMALEVEL =1
AND Trigger = 0]

DMAEN = 1 |

DMAXSA — T_SourceAdd

DMAABORT = 1

Reset

DMAEN =0

DMAXSZ — T_Size

DMAXDA — T_DestAdd

DMA Operation

Hold CPU,
Transfer one word/byte

T_Size - DMAxSZ
DMAXSA — T_SourceAdd
DMAXDA — T_DestAdd

DMADTXx = 4
AND DMAXSZ =0
AND DMAEN =1

Decrement DMAxSZ
Modify T_SourceAdd

Modify T_DestAdd

DMA Controller

DMAABORT=0 DMAREQ =0 |«
4
. . DMAXSZ > 0
Wait for Trigger AND DMAEN = 1
[+Trigger AND DMALEVEL =0]
OR
i =1 AND DMALEVEL=1
2 x MCLK [Trigger=1]

10-7

DMA Operation

Block Transfers

In block transfer mode, a transfer of a complete block of data occurs after one
trigger. When DMADTX = 1, the DMAEN bit is cleared after the completion of
the block transfer and must be set again before another block transfer can be
triggered. After a block transfer has been triggered, further trigger signals
occurring during the block transfer are ignored. The block transfer state
diagram is shown in Figure 10-4.

The DMAXSZ register is used to define the size of the block and the
DMADSTINCRx and DMASRCINCRXx bits select if the destination address
and the source address are incremented or decremented after each transfer
of the block. If DMAXSZ = 0, no transfers occur.

The DMAXSA, DMAXDA, and DMAXSZ registers are copied into temporary
registers. The temporary values of DMAXSA and DMAXDA are incremented
or decremented after each transfer in the block. The DMAXSZ register is
decremented after each transfer of the block and shows the number of
transfers remaining in the block. When the DMAXSZ register decrements to
zero it is reloaded from its temporary register and the corresponding DMAIFG
flag is set.

During a block transfer, the CPU is halted until the complete block has been
transferred. The block transfer takes 2 x MCLK x DMAXSZ clock cycles to
complete. CPU execution resumes with its previous state after the block
transfer is complete.

In repeated block transfer mode, the DMAEN bit remains set after completion
of the block transfer. The next trigger after the completion of a repeated block
transfer triggers another block transfer.

10-8 DMA Controller

DMA Operation

Figure 10-4. DMA Block Transfer State Diagram

DMAEN =0
Reset
DMAEN =0 OMAEN - 0

DMAREQ =0 B =

T _Size —> DMAXSZ DMAEN =1 |
_ DMAXSZ — T_Size

[DMADTx = 1 DMAXSA — T_SourceAdd
AND Dl\él),:(SZ =0] DMAXDA — T_DestAdd

DMAEN =0

DMAABORT = 1

DMAREQ =0

T_Size - DMAxSZ
DMAABORT=0 DMAXSA — T_SourceAdd [€)

DMAXDA — T_DestAdd

Wait for Trigger
DMADTx = 5
AND DMAXSZ = 0
[+Trigger AND DMALEVEL = 0] AND DMAEN =1
OR

i =1 AND DMALEVEL=1
2 x MCLK [Trigger=1 A]

Hold CPU,
Transfer one word/byte

[ENNMI =1
AND NMI event] L
OR DMAXSZ > 0

[DMALEVEL =1
Decrement DMAxSZ
Modify T_SourceAdd =

AND Trigger = 0]
Modify T_DestAdd

DMA Controller 10-9

DMA Operation

Burst-Block Transfers

In burst-block mode, transfers are block transfers with CPU activity
interleaved. The CPU executes 2 MCLK cycles after every four byte/word
transfers of the block resulting in 20% CPU execution capacity. After the
burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is
cleared. DMAEN must be set again before another burst-block transfer can
be triggered. After a burst-block transfer has been triggered, further trigger
signals occurring during the burst-block transfer are ignored. The burst-block
transfer state diagram is shown in Figure 10-5.

The DMAXSZ register is used to define the size of the block and the
DMADSTINCRx and DMASRCINCRXx bits select if the destination address
and the source address are incremented or decremented after each transfer
of the block. If DMAXSZ = 0, no transfers occur.

The DMAXSA, DMAXDA, and DMAXSZ registers are copied into temporary
registers. The temporary values of DMAXSA and DMAXDA are incremented
or decremented after each transfer in the block. The DMAXSZ register is
decremented after each transfer of the block and shows the number of
transfers remaining in the block. When the DMAXSZ register decrements to
zero it is reloaded from its temporary register and the corresponding DMAIFG
flag is set.

In repeated burst-block mode the DMAEN bit remains set after completion of
the burst-block transfer and no further trigger signals are required to initiate
another burst-block transfer. Another burst-block transfer begins immediately
after completion of a burst-block transfer. In this case, the transfers must be
stopped by clearing the DMAEN bit, or by an NMI interrupt when ENNMI is set.
In repeated burst-block mode the CPU executes at 20% capacity continuously
until the repeated burst-block transfer is stopped.

10-10 DMA Controller

Figure 10-5. DMA Burst-Block Transfer State Diagram

DMAEN =0

»

’\Reset

DMA Operation

T_Size - DMAxSZ
DMAXSA — T_SourceAdd

DMAXDA — T_DestAdd

DMAEN =0 DMAEN
DMAREQ =0 =0
T_Size — DMAXSZ DMAEN =1]
DMAXSZ — T_Size
[DMADTXx = {2, 3} DMAXSA — T_SourceAdd
AND DMAXSZ = 0] DMAXxDA — T_DestAdd
OR
DMAEN =0
DMAABORT =1
DMAABORT=0
y
Wait for Trigger
[+Trigger AND DMALEVEL =0]
OR
Tri =1 AND DMALEVEL=1
2 x MCLK | [Trigger]
Hold CPU,\ <
Transfer one word/byte
[ENNMI = 1
AND NMI event]
OR
[DMALEVEL =1
AND Trigger = 0]
DMAXSZ > 0
Decrement DMAxSZ

2 x MCLK

Modify T_SourceAdd
Modify T_DestAdd

DMAXSZ > 0 AND
] DMAXSZ > 0
a multiple of 4 words/bytes
were transferred [DMADTx = {6, 7}
AND DMAXSZ = Q]
Burst State)

(release CPU for 2xMCLK)

DMA Controller

10-11

DMA Operation

10.2.3 Initiating DMA Transfers

Each DMA channel is independently configured for its trigger source with the
DMAXTSELXx bits as described in Table 10-2.The DMAXTSELX bits should be
modified only when the DMACTLx DMAEN bit is 0. Otherwise, unpredictable
DMA triggers may occur.

When selecting the trigger, the trigger must not have already occurred, or the
transfer will not take place. For example, if the TACCR2 CCIFG bit is selected
as a trigger, and it is already set, no transfer will occur until the next time the
TACCR2 CCIFG bit is set.

Edge-Sensitive Triggers

When DMALEVEL = 0, edge-sensitive triggers are used and the rising edge
of the trigger signal initiates the transfer. In single-transfer mode, each transfer
requires its own trigger. When using block or burst-block modes, only one
trigger is required to initiate the block or burst-block transfer.

Level-Sensitive Triggers

When DMALEVEL = 1, level-sensitive triggers are used. For proper operation,
level-sensitive triggers can only be used when external trigger DMAEO is
selected as the trigger. DMA transfers are triggered as long as the trigger
signal is high and the DMAEN bit remains set.

The trigger signal must remain high for a block or burst-block transfer to
complete. If the trigger signal goes low during a block or burst-block transfer,
the DMA controller is held in its current state until the trigger goes back high
or until the DMA registers are modified by software. If the DMA registers are
not modified by software, when the trigger signal goes high again, the transfer
resumes from where it was when the trigger signal went low.

When DMALEVEL = 1, transfer modes selected when DMADTx = {0, 1, 2, 3}
are recommended because the DMAEN bit is automatically reset after the
configured transfer.

Halting Executing Instructions for DMA Transfers

The DMAONFETCH bit controls when the CPU is halted for a DMA transfer.
When DMAONFETCH = 0, the CPU is halted immediately and the transfer
begins when a trigger is received. When DMAONFETCH = 1, the CPU finishes
the currently executing instruction before the DMA controller halts the CPU
and the transfer begins.

Note: DMAONFETCH Must Be Used When The DMA Writes To Flash

If the DMA controller is used to write to flash memory, the DMAONFETCH
bit must be set. Otherwise, unpredictable operation can result.

10-12 DMA Controller

Table 10-2.

DMA Operation

DMA Trigger Operation

DMAXTSELXx

Operation

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset
when the transfer starts

A transfer is triggered when the TACCR2 CCIFG flag is set. The TACCR2 CCIFG flag is
automatically reset when the transfer starts. If the TACCR2 CCIE bit is set, the TACCR2
CCIFG flag will not trigger a transfer.

A transfer is triggered when the TBCCR2 CCIFG flag is set. The TBCCR2 CCIFG flag is
automatically reset when the transfer starts. If the TBCCR2 CCIE bit is set, the TBCCR2
CCIFG flag will not trigger a transfer.

Devices with USARTO: A transfer is triggered when the URXIFGO flag is set. URXIFGO is
automatically reset when the transfer starts. If URXIEQ is set, the URXIFGO flag will not trigger
a transfer.

Devices with USCI_AO: A transfer is triggered when the UCAORXIFG flag is set. UCAORXIFG
is automatically reset when the transfer starts. If UCAORXIE is set, the UCAORXIFG flag will
not trigger a transfer.

Devices with USARTO: A transfer is triggered when the UTXIFGO flag is set. UTXIFGO is
automatically reset when the transfer starts. If UTXIEO is set, the UTXIFGO flag will not trigger
a transfer.

Devices with USCI_AO: A transfer is triggered when the UCAOTXIFG flag is set. UCAOTXIFG
is automatically reset when the transfer starts. If UCAOTXIE is set, the UCAOTXIFG flag will
not trigger a transfer.

Devices with DAC12: A transfer is triggered when the DAC12_0CTL DAC12IFG flag is set.
The DAC12_0CTL DAC12IFG flag is automatically cleared when the transfer starts. If the
DAC12_0CTL DAC12IE bit is set, the DAC12_0CTL DAC12IFG flag will not trigger a transfer.

Devices with ADC12: A transfer is triggered by an ADC12IFGx flag. When single-channel
conversions are performed, the corresponding ADC12IFGx is the trigger. When sequences
are used, the ADC12IFGx for the last conversion in the sequence is the trigger. A transfer is
triggered when the convers