
 1 / 23

CuteDigi BMX Bluetooth to UART/I2C/USB Module (GEN II)

CuteDigi BMX Bluetooth to UART module uses CSRBlueCore4- External chipsets. It embeds 8Mbit flash forsoftware storage, and supports 3.3V power supply. BMX is amuti-function module. It can be used in different products according to the embedded firmware settings. It is especially targeted for data transfer. The second generation Bluetooth UART module has two working mode: AT command mode, and automatic bindingtransparent data mode. In automatic binding data transparent mode, it can beconfigured to Master, Slave or Loopback three different modes, and it will connect toor be connected by other devices that support SPP protocol per configuration. In ATcommand mode, user can configure the module and send control commands. Bycontrolling logical level of IO pin PIO11, user can switch the working modes betweenAT command mode and transparent data mode. ※ Chipset：CSR BC417143 (BlueCore4- External) ※ Bluetooth version：V2.0+EDR ※ Output power：Class II ※ Flash：8Mbit ※ Power Supply：3.3V ※ Interface：I2C，UART，PCM，USB1.2 ※ Size：26.9mm*13mm*2.2mm ※ Rohs: Yes

 2 / 23

Other pins used by Bluetooth UART module:

1. PIO8 is used to control LED indicating the status. It will blink after power on. Different

blink intervals are used to indicate different status.

2. PIO9 is used to control LED indicating paring. It will be steady on when paring is

successful.

3. PIO11 is used to switch the working mode. High level-> AT command mode; Floating or

low level-> normal transparent data mode.

4. The module has built-in power on reset circuitry.

 3 / 23

Steps to configure the module as master device:

1. PIO11 is set to high.

2. Power on, and the module will enter into AT command mode.

3. Use hyper terminal or other serial console, set baud rate 38400, data 8 bit, stop bit 1, no parity,

no flow control.

4. Send “AT+ROLE=1\r\n”, if successful, it will return “OK\r\n”.

5. PIO is set to low, and power cycle, the module will be master device and automatically search

for slave device and do binding.

UART communication circuit

 4 / 23

AT Commands

(AT commands can be upper or lower case, and also end with \r\n)

#1 : Test Comamnd

Command Return Argument

AT OK NONE

#2 : Reset

Command Return Argument

AT+RESET OK NONE

Results: It works as power cycle.

#3: Poll the software version

Command Return Argument

AT+VERSION? +VERSION:<Param

OK

Param: software version

Example:

at+version?\r\n

+VERSION:1.0-20090818

OK

#4: Restore the default setting

Command Return Argument

AT+ORGL OK NONE

Restore the default setting:

1. Device class: 0

2. Inquiry code: 0x009e8b33

3. Device mode: Slave mode

4. Binding mode: SPP

5. Serial port: 38400 bits/s; 1 stop bit, no parity

6. Pairing code: “1234”

7. Device name: “HHW-SPP-1800-2

 5 / 23

#5: Poll the address of the Bluetooth device

Command Return Argument

AT+ADDR? +ADDR: <Param>

OK

Param: the address of the

Bluetooth device

Representation of the address: NAP:UAP:LAP (HEX)

Examples:

The address of the Bluetooth device is: 12:34:56:ab:cd:ef

At+addr?\r\n

+ADDR:1234:56:abcdef

OK

#6: Set and poll device name

Command Return Argument

AT+NAME=<Para1> OK Param: device name

Default: “HHW-SPP-1800-

2”

AT+NAME? 1: +NAME: <Param>

OK --- successful

2: FAIL --- fail

Example:

AT+NAME=HHW-SPP-1800-2\r\n ————— Set Device name as HHW-SPP-1800-2

OK

AT + NAME=“HHW-SPP-1800-2”\r\n ————— Set Device name as HHW-SPP-1800-2

OK

at+name?\r\n

+NAME: Beijin

OK

 6 / 23

#7: Poll remote device name

Command Return Argument

AT+RNAME? <Param1> 1: +RNAME: <Param2 >

OK --- successful

2: FAIL --- fail

Param1: remote device address

Param2: remote device name

Representation of the address: NAP:UAP:LAP (HEX)

Examples:

The address of the remote Bluetooth device is: 00:02:72:od:22:24, the device name is:

Bluetooth

t+rname? 0002,72,0d2224\r\n

+RNAMELBluetooth

OK

#8: Set/Poll device role

Command Return Argument

AT+ROLE= <Param> OK Param:

0 – slave

1 – Master

2 – Slave-loop

Default: 0

AT+ROLE? +ROLE: <Param >

OK

Explanation of device roles:

Slave – be connected by other device

Slave-loop – be connected by other device, receive and send back whatever received

Master – Actively poll the nearby device and initialize binding to other devices.

#9: Set and poll device type

Command Return Argument

AT+CLASS=<Param> OK Param: device type

Device type is a 32-bit

parameter. It is used to indicate

the device class and the service

it supports

Default: 0

The actual meaning is explained

in appendix 1.

AT+CLASS?

1. +CLASS: <Param>

OK

2. FAIL

In order the effectively filter the nearby device and quickly locate the users self defined

device, user can set the device to be nonstandard device, such as 0x1f1f (hex)

 7 / 23

#10: Set/Poll Inquire Access Code

Command Return Argument

AT+IAC=<Param> 1: OK

2: FAIL

Param: Inquire Access Code

Default: 938b33

Detailed explanation can be found

the appendix.

AT+IAC? +IAC: <Param>

OK

If the inquire access code is set to GIAC(General Inquire Access Code: 0x9e8b33), it can be

used to discover or be discovered by all nearby devices. If user wants the device to be able

to be found quickly, user can set the Inquire Access Code to be code not as GIAC and LIAC,

such as 0x928b3f.

Example:

AT+IAC=928b3f\r\n

OK

AT+IAC?\r\n

+ IAC: 928b3f

OK

#11: Set and poll Inquiry mode

Command Return Argument

AT+INQM=<Param1>, <Param2>,

<Param3>

1. OK

2. FAIL

Param1: Inquiry Mode

0— inquirey mode

standard

1— inquiry mode rssi

Param2: max response

number

Param3: time out, 1-48

(1.28s-61.44s)

Default: 1,1,48

AT+INQM?

+INQM: <Param1>,

<Param2>,<Param3>

OK

AT+INQM=1,9,48\r\n -- Set inquiry mode: with RSSI, max device response number 9 then

stop inquiry, max time out 48X1.28=61.44s

OK

AT+INQM?\r\n

+INQM:1,9,48

OK

 8 / 23

#12: Set and poll paring password

Command Return Argument

AT+PSWD=<Param> OK Param: paring password

Default: “1234”
AT+PSWD?

+PSWD:<Param>

OK

#14: Set and poll serial port parameters

Command Return Argument

AT+UART=<Param1>,<Param2>,

<Param3>

OK Param1: baud rate (bits/s)

4800

9600

19200

38400

57600

115200

230400

460800

912600

1382400

Param2: stop bit

0- 1 bit

1- 2 bits

Param3: parity bit

0- None

1- Odd

2- Even

Default: 9600,0,0

AT+UART?

+UART:<Param1>,<Param2>,<

Param3>

OK

Example: Set serial port parameters to 115200, 2 bits stop bit, and even parity

AT+UART=115200, 1,2 \r\n

OK

AT+UART?

+UART:115200,1,2

OK

 9 / 23

#14: Set and poll connection mode

Command Return Argument

AT+CMODE=<Param> OK Param:

0 – specific address mode

(the address is specified in

binding command)

2- No specific address

Default: 0

AT+CMODE?
+CMODE::<Param>

OK

#15: Set and poll binding device address

Command Return Argument

AT+BIND=<Para1> OK Param – Binding Bluetooth

device address

Default address:

00:00:00:00:00:00

AT+BIND?
+BIND:<Param>

OK

The address can be represented as NAP:UAP:LAP (hex)

The binding command is only valid in specific address mode.

Example:

AT+BIND=1234,56,abcdef\r\n

OK

AT+BIND?\r\n

+BIND:1234:56:abcdef

OK

#16: Set/Poll the polarity of LED indicator driver

Command Return Argument

AT+POLAR=<Param1>, <Param2> OK Param1:

0 – PI08 outputs low level to turn

on LED

1- PI08 outputs high level to turn

on LED

Param2:

0-PI09 outputs low level to turn on

LED

1-PI09 outputs high level to turn on

LED

Default: 1,1

AT+DEFAULT

 10 / 23

PI08 drives the working status, and PI09 drives the link status.

Example:

PI08 outputs low level to turn on LED, and PI09 outputs high level to turn on LED.

AT+POLAR=0,1 \r\n

OK

AT+POLAR?\r\n

+POLAR:0,1

OK

#17: Set single PIO output

Command Return Argument

AT+PIO=<Param1>,<Param2> OK Param1: PIO port number

(decimal)

Param2L PIO port output

0- Low voltage

1- High voltage

The useable port is PIO2- PIO7 and PIO10.

Example:

1. PIO10 outputs high level

AT+PIO=10,1\r\n

OK

2. PIO10 outputs low level

AT+PIO=10,0\r\n

OK

#18: Set multiple port output

Command Return Argument

AT+MPIO=<Param> OK Param: PIO port number

mask combination (hex)

The useable port is PIO2- PIO7 and PIO10.

PIO port mask = (1 << port number)

PIO port mask combination = (PIO port mask 1| PIO port mask 2 |PIO port mask 3 |…)

Example:

PIO2 mask= (1<<2)=0x004

PIO10 mask = (1<<10)=0x400

PIO port mask combination= (0x004 | 0x400)=0x404

PIO 2 and PIO 10 output high:

AT+MPIO=404\r\n

OK

 11 / 23

#19: Poll PIO port input

Command Return Argument

AT+MPIO? +MPIO: <Param>

OK

Param- PIO port value (16

bits)

Param[0]=PIO0

Param[1]=PIO1

Paramp2]=PIO2

…

Param[10]=PIO10

Param[11]=PIO11

#20:Set/Poll Inquiry parameters

Command Return Argument

AT+IPSCAN=<Param1>,<Param2>,

<Param3>, <Param4>

OK Param1: inquiry time interval

Param2:continous poll time

Param3: call time interval

Param4: call continuous time

All above are decimal numbers

Default: 1024, 512, 1024, 512

AT+IPSCAN? +IPSCAN:<Param1>,

<Param2>,<Param3>,<P

aram4>

#21:Set/Poll SNIFF energy saving parameters

Command Return Argument

AT+SNIFF=<Param1>,<Param2>,<

Param3>,<Param4>

OK Param1: max time

Param2: min time

Param3: try time

Param4: time out

All above are decimal

numbers

Default: 0,0,0,0

AT+SNIFF? +SNIFF:<Param1>,<Param2>,<

Param3>,<Param4>

 12 / 23

#22: Set/Poll Security and Encryption modes

Command Return Argument

AT+SENM=<Param1>,<Param2> 1: OK

2:FAIL

Param1: Security mode

0- Sec_mode0_off

1- Sec_mode1_non-secure

2- Sec_mode2_service

3- Sec_mode3_link

4- Sec_mod_unknown

Param2:encryption mode

0- hci_enc_mode_off

1- hci_enc_mode_pt_to_pt

2- hci_enc_mode_pt_to_pt_

and_bcast

Default: 0,0

AT+SENM? +SENM:<Param1>,<Par

am2>

OK

#23: Delete Authenticated Device from the authenticated device list

Command Return Argument

AT+RMSAD=<Param> OK Param: Bluetooth device

address

Example:

Delete device with address: 12:34:56:ab:cd:ef

at+rmsad=1234:56:abcdef\r\n

OK

Or

at+rmsad=1234:56:abcdef\r\n

FAIL ==== there is no such device in the list

#24: Delete all Authenticated Devices from the authenticated device list

Command Return Argument

AT+RMSAD OK None

 13 / 23

#25: Locate Authenticated Device from the authenticated device list

Command Return Argument

AT+FSAD=<Param> 1. OK - exists

2. FAIL- no-exisit

Param: Bluetooth device

address

Example:

Finddevice with address: 12:34:56:ab:cd:ef

at+FSAD=1234:56:abcdef\r\n

OK

Or

at+fsad=1234:56:abcdef\r\n

FAIL ==== there is no such device in the list

#26: Obtain the total Authenticated Device number in the authenticated device list

Command Return Argument

AT+ADCN?=<Param> +ADCN:<Param>

OK

Param: total number of device in

the authenticated device list

#27: Obtain the most recently used Authenticated Device

Command Return Argument

AT+MRAD? +MRAD:<Param> Param: most recently used

authenticated device

#28: Obtain the working status of the Bluetooth device

Command Return Argument

AT+STATE? +STATE:<Param>

OK

Param: working status

“INITIALIZED”

“READY”

“PAIRABLE”

“PAIRD”

“INQUIRING”

“CONNECTING”

“CONNECTED”

“DISCONNECTED”

“NUKNOW”

 14 / 23

#29: Initialise the spp profile lib

Command Return Argument

AT+INIT 1. OK

2. FAIL

NONE

#30: Inquire nearby devices

Command Return Argument

AT+INQ +INQ:

<Param1>,<Param2>,<Param3>

….

OK

Param1: address

Param2: device class

Param3: RSSI

Example 1:

at+init\r\n —— Initialize SPP (can’t repeatedly initialize)

OK

at+iac=9e8b33\r\n ——inquire general inquire access code

OK

at+class=0\r\n —— inquire all devices types

OK

at+inqm=1,9,48\r\n —— Inquire mode: RSSI, max number 9, timeout 48

At+inq\r\n —— inquire

+INQ:2:72:D2224,3E0104,FFBC

+INQ:1234:56:0,1F1F,FFC1

+INQ:1234:56:0,1F1F,FFC0

+INQ:1234:56:0,1F1F,FFC1

+INQ:2:72:D2224,3E0104,FFAD

+INQ:1234:56:0,1F1F,FFBE

+INQ:1234:56:0,1F1F,FFC2

+INQ:1234:56:0,1F1F,FFBE

+INQ:2:72:D2224,3E0104,FFBC

OK

#31: Cancel Inquire nearby devices

Command Return Argument

AT+INQC OK None

 15 / 23

#32: Device pairing

Command Return Argument

AT+PAIR=<Param1>,<Param2> 1. OK

2. FAIL

Param1: remote device address

Param2:timeout

Example:

Pair with remote device: 12:34:56:ab:cd:ef, timeout 20 s.

At+pair=1234,56,abcdef, 20\r\n

OK

#33: Device Connection

Command Return Argument

AT+LINK=<Param> 1. OK

2. FAIL

Param: remote device address

Example:

Link to remote device: 12:34:56:ab:cd:ef

At+fsad=1234,56,abcdef\r\n -- check if remote device is in the authenticated device list or

not

OK

At+link==1234,56,abcdef\r\n -- it is in the list, doesn’t need to be inquired and can be

directly linked

OK

#34: Device Disconnection

Command Return Argument

AT+DISC 1. +DISC: SUCCESS

2. +DISC:LINK_LOSS

3. +DISC:NO_SLC

4. +DISC:TIMEOUT

5. +DICS:ERROR

None

#35: Enter into energy saving mode

Command Return Argument

AT+ENSNIFF=<Param> OK Param: Bluetooth device address

#36: Exit energy saving mode

Command Return Argument

AT+EXSNIFF=<Param> OK Param: Bluetooth device address

 16 / 23

Appendix 1: AT command error

ERROR code decoder

Error_code (hex) Explanation

0 AT command error

1 The result is default value

2 PSKEY write error

3 Device name is too long (more than 32

bytes)

4 Device name is 0 byte

5 Bluetooth address: NAP is too long

6 Bluetooth address: UAP is too long

7 Bluetooth address: LAP is too long

8 PIO port mask length is 0

9 Invalid PIO port

A Device class is 0 byte

B Device class is too long

C Inquire Access Code length is 0

D Inquire Access Code is too long

E Invalid Inquire Access Code

F Pairing password is 0

10 Pairing password is too long (more than 16

bytes)

11 Role of module is invalid

12 Baud rate is invalid

13 Stop bit is invalid

14 Parity bit is invalid

15 No device in the pairing list

16 SPP is not initialized

17 SPP is repeatedly initialized

18 Invalid inquiry mode

19 Inquiry timeout

1A Address is 0

1B Invalid security mode

1C Invalid encryption mode

 17 / 23

Appendix 2: Device Class

The Class of Device/Service(CoD)is a 32 bits number that is made of 3 fields. One field

specifies the service supported by the device. Another field specifies the major device

class, which broadly corresponds to the type of the device. The third field specifies the

minor device class, which describes the device type in more detail.

The Class of Device/Service (CoD) field has a variable format. The format is indicated

using the 'Format Type field' within the CoD. The length of the Format Type field is

variable and ends with two bits different from '11'. The version field starts at the least

significant bit of the CoD and may extend upwards. In the 'format #1' of the CoD

(Format Type field = 00), 11 bits are assigned as a bit-mask (multiple bits can be set)

each bit corresponding to a high level generic category of service class. Currently 7

categories are defined. These are primarily of a 'public service' nature. The remaining 11

bits are used to indicate device type category and other device-specific

characteristics.Any reserved but otherwise unassigned bits, such as in the Major Service

Class field, should be set to 0.

Figure 1.2: The Class of Device/Service field (first format type). Please note the order in

which the octets are sent on the air and stored in memory. Bit number 0 is sent first on

the air.

 18 / 23

1. MAJOR SERVICE CLASSES

Bit no Major Service Class

13 Limited Discoverable Mode [Ref #1]

14 (reserved)

15 (reserved)

16 Positioning (Location identification)

17 Networking (LAN, Ad hoc, ...)

18 Rendering (Printing, Speaker, ...)

19 Capturing (Scanner, Microphone, ...)

20 Object Transfer (v-Inbox, v-Folder, ...)

21 Audio (Speaker, Microphone, Headset

service, ...)

22 Telephony (Cordless telephony, Modem,

Headset service, ...)

23 Information (WEB-server, WAP-

server, ...)

TABLE 1.2: MAJOR SERVICE CLASSES

[Ref #1 As defined in See Generic Access Profile, Bluetooth SIG]

2. MAJOR DEVICE CLASSES

The Major Class segment is the highest level of granularity for defining a Bluetooth Device.

The main function of a device is used to determine the major class grouping. There are 32

different possible major classes. The assignment of this Major Class field is defined in

Table 1.3.

12 11 10 9 8 Major Device Class

0 0 0 0 0 Miscellaneous [Ref #2]

0 0 0 0 1 Computer (desktop,notebook, PDA, organizers,)

0 0 0 1 0 Phone (cellular, cordless, payphone, modem, ...)

0 0 0 1 1 LAN /Network Access point

0 0 1 0 0 Audio/Video (headset,speaker,stereo, video display,

vcr.....

0 0 1 0 1 Peripheral (mouse, joystick, keyboards,)

0 0 1 1 0 Imaging (printing, scanner, camera, display, ...)

1 1 1 1 1 Uncategorized, specific device code not specified

X X X X X All other values reserved

TABLE 1.3: MAJOR DEVICE CLASSES

[Ref #2: Used where a more specific Major Device Class code is not suited (but only as

specified in this document). Devices that do not have a major class code assigned can use

the all-1 code until 'classified']

 19 / 23

3. THE MINOR DEVICE CLASS FIELD

The 'Minor Device Class field' (bits 7 to 2 in the CoD), are to be interpreted only in

the context of the Major Device Class (but independent of the Service Class field).

Thus the meaning of the bits may change, depending on the value of the 'Major

Device Class field'. When the Minor Device Class field indicates a device class, then

the primary device class should be reported, e.g. a cellular phone that can also work

as a cordless handset should use 'Cellular' in the minor device class field.

4. MINOR DEVICE CLASS FIELD - COMPUTER MAJOR CLASS

7 6 5 4 3 2 Minor Device Class bit no of CoD

0 0 0 0 0 0 Uncategorized, code for device not assigned

0 0 0 0 0 1 Desktop workstation

0 0 0 0 1 0 Server-class computer

0 0 0 0 1 1 Laptop

0 0 0 1 0 0 Handheld PC/PDA (clam shell)

0 0 0 1 0 1 Palm sized PC/PDA

0 0 0 1 1 0 Wearable computer (Watch sized)

X X X X X X All other values reserved

TABLE 1.4: SUB DEVICE CLASS FIELD FOR THE 'COMPUTER' MAJOR CLASS

5. MINOR DEVICE CLASS FIELD - PHONE MAJOR CLASS

7 6 5 4 3 2 Minor Device Class bit no of CoD

0 0 0 0 0 0 Uncategorized, code for device not assigned

0 0 0 0 0 1 Cellular

0 0 0 0 1 0 Cordless

0 0 0 0 1 1 Smart phone

0 0 0 1 0 0 Wired modem or voice gateway

0 0 0 1 0 1 Common ISDN Access

0 0 0 1 1 0 Sim Card Reader

X X X X X X All other values reserved

6. MINOR DEVICE CLASS FIELD - LAN/NETWORK ACCESS POINT MAJOR CLASS

7 6 5 Minor Device Class bit no of CoD

0 0 0 Fully available

0 0 1 1 - 17% utilized

0 1 0 17 - 33% utilized

0 1 1 33 - 50% utilized

1 0 0 50 - 67% utilized

1 0 1 67 - 83% utilized

 20 / 23

1 1 0 83 - 99% utilized

1 1 1 No service available [REF #3]

X X X All other values reserved

TABLE 1.6: THE LAN/NETWORK ACCESS POINT LOAD FACTOR FIELD

[Ref #3: "Device is fully utilized and cannot accept additional connections at this

time, please retry later"]

The exact loading formula is not standardized. It is up to each LAN/Network Access

Point implementation to determine what internal conditions to report as a

utilization percentage. The only requirement is that the number reflects an ever-

increasing utilization of communication resources within the box. As a

recommendation, a client that locates multiple LAN/Network Access Points should

attempt to connect to the one reporting the lowest load.

4 3 2 Minor Device Class bit no of CoD

0 0 0 Uncategorized (use this value if no other apply)

X X X All other values reserved

TABLE 1.7: RESERVED SUB-FIELD FOR THE LAN/NETWORK ACCESS POINT

7. MINOR DEVICE CLASS FIELD - AUDIO/VIDEO MAJOR CLASS

7 6 5 4 3 2 Minor Device Class bit no of CoD

0 0 0 0 0 0 Uncategorized, code for device not assigned

0 0 0 0 0 1 Device conforms to the Headset profile

0 0 0 0 1 0 Hands-free

0 0 0 0 1 1 (Reserved)

0 0 0 1 0 0 Microphone

0 0 0 1 0 1 Loudspeaker

0 0 0 1 1 0 Headphones

0 0 0 1 1 1 Portable Audio

0 0 1 0 0 0 Car audio

0 0 1 0 0 1 Set-top box

0 0 1 0 1 0 HiFi Audio Device

0 0 1 0 1 1 VCR

0 0 1 1 0 0 Video Camera

0 0 1 1 0 1 Camcorder

0 0 1 1 1 0 Video Monitor

0 0 1 1 1 1 Video Display and Loudspeaker

0 1 0 0 0 0 Video Conferencing

0 1 0 0 0 1 (Reserved)

 21 / 23

0 1 0 0 1 0 Gaming/Toy [Ref #4]

X X X X X X All other values reserved

[Ref #4: Only to be used with a Gaming/Toy device that makes audio/video

capabilities available via Bluetooth]

TABLE 1.8: SUB DEVICE CLASSES FOR THE 'AUDIO/VIDEO' MAJOR CLASS

8. MINOR DEVICE CLASS FIELD - PERIPHERAL MAJOR CLASS

7 6 Minor Device Class bit no of CoD

0 1 Keyboard

1 0 Pointing device

1 1 Combo keyboard/pointing device

X X All other values reserved

TABLE 1.9: THE PERIPHERAL MAJOR CLASS KEYBOARD/POINTING DEVICE FIELD

Bits 6 and 7 independently specify mouse, keyboard or combo mouse/keyboard

devices. These may be combined with the lower bits in a multifunctional device.

5 4 3 2 Minor Device Class bit no of CoD

0 0 0 0 Uncategorized device

0 0 0 1 Joystick

0 0 1 0 Gamepad

0 0 1 1 Remote control

0 1 0 0 Sensing device

0 1 0 1 Digitizer tablet

X X X X All other values reserved

TABLE 1.10: RESERVED SUB-FIELD FOR THE DEVICE TYPE

9. MINOR DEVICE CLASS FIELD - IMAGING MAJOR CLASS

 22 / 23

7 6 5 4 Minor Device Class bit no of CoD

X X X 1 Display

X X 1 X Camera

X 1 X X Scanner

1 X X X Printer

X X X X All other values reserved

TABLE 1.11: THE IMAGING MAJOR CLASS BITS 4 TO 7

Bits 4 to 7 independantly specify display, camera, scanner or printer. These may be

combined in a multifunctional device.

3 2 Minor Device Class bit no of CoD

0 0 Uncategorized, default

X X All other values reserved

TABLE 1.12: THE IMAGING MAJOR CLASS BITS 2 AND 3

Bits 2 and 3 are reserved

 23 / 23

Appendix 3 The Inquiry Access Codes

The General- and Device-Specific Inquiry Access Codes (DIACs)

The Inquiry Access Code is the first level of filtering when finding Bluetooth devices and

services. The main purpose of defining multiple IACs is to limit the number of responses

that are received when scanning devices within range.

0． 0x9E8B33 —— General/Unlimited Inquiry Access Code (GIAC)

1． 0x9E8B00 —— Limited Dedicated Inquiry Access Code (LIAC)

2． 0x9E8B01 ～ 0x9E8B32 RESERVED FOR FUTURE USE

3． 0x9E8B34 ～ 0x9E8B3F RESERVED FOR FUTURE USE

The Limited Inquiry Access Code (LIAC) is only intended to be used for limited time periods

in scenarios where both sides have been explicitly caused to enter this state, usually by user

action. For further explanation of the use of the LIAC, please refer to the Generic Access

profile.

In contrast it is allowed to be continuously scanning for the General Inquiry Access Code

(GIAC) and respond whenever inquired.

