
MGLCD - Arduino library support for Monochrome Graphics LCDs
Copyright (C)2011 Henning Karlsen. All right reserved

Basic functionality of this library are based on the demo-code provided by ElecFreaks. You can
find the latest version of the library at http://www.henningkarlsen.com/electronics

This library has been made to make it easy to use Monochrome Graphics LCDs with an Arduino.

If you make any modifications or improvements to the code, I would appreciate that you share the
code with me so that I might include it in the next release. I can be contacted through
http://www.henningkarlsen.com/electronics/contact.php

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation; either version
2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library;
if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Version: 1.0 01 Oct 2011 • initial release

 Page 1 of 5

Defined Literals:

Alignment

For use with print(), printNumI() and printNumF()

LEFT:
RIGHT:

CENTER:

 0
9999
9998

Included Fonts:

SmallFont

Charactersize:

Number of characters:
 6x8 pixels
95

WideFont

Charactersize:

Number of characters:
 8x8 pixels
95

MediumNumbers

Charactersize:

Number of characters:
 12x16 pixels
13

BigNumbers

Charactersize:

Number of characters:
 14x24 pixels
13

 Page 2 of 5

 Page 3 of 5

Functions:

MGLCD(D0, D1, D2, D3, D4, D5, D6, D7, A0, RW, EP, RST);

Class constructor.

Parameters: D0-D7: Arduino pins for Data bus

A0: Arduino pin for Register Select (Data/Command)
RW: Arduino pin for Read/Write
EP: Arduino pin for Data Latching
RST: Arduino pin for Reset

Usage: MGLCD myGLCD(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13); // Start an instance of the MGLCD class

initLCD();

Initialize the LCD.

Parameters: None
Usage: myGLCD.initLCD(); // Initialize the display
Notes: This will reset and clear the display.

rotateDisplay(value);

Select if the output on the display should be rotated 180 degrees.

Parameters: value: true - Rotate output 180 degrees
 false – Do not rotate output

Usage: myGLCD.rotateDisplay(true); // Rotate output to the display
Notes: rotateDisplay() must be called before calling initLCD() to have any effect.

clrScr();

Clear the screen.

Parameters: None
Usage: myGLCD.clrScr(); // Clear the screen

fillScr();

Fill the screen.

Parameters: None
Usage: myGLCD.fillScr(); // Fill the screen

invert(mode);

Set inversion of the display on or off.

Parameters: mode: true - Invert the display

 false – Normal display
Usage: myGLCD.invert(true); // Set display inversion on

setPixel(x, y);

Turn on the specified pixel.

Parameters: x: x-coordinate of the pixel

y: y-coordinate of the pixel
Usage: myGLCD.setPixel(0, 0); // Turn on the upper left pixel

clrPixel(x, y);

Turn off the specified pixel.

Parameters: x: x-coordinate of the pixel

y: y-coordinate of the pixel
Usage: myGLCD.clrPixel(0, 0); // Turn off the upper left pixel

invPixel(x, y);

Invert the state of the specified pixel.

Parameters: x: x-coordinate of the pixel

y: y-coordinate of the pixel
Usage: myGLCD.invPixel(0, 0); // Invert the upper left pixel

 Page 4 of 5

invertText(mode);

Select if text printed with print(), printNumI() and printNumF() should be inverted.

Parameters: mode: true - Invert the text
 false – Normal text

Usage: myGLCD.invertText(true); // Turn on inverted printing
Notes: SetFont() will turn off inverted printing

print(st, x, y);

Print a string at the specified coordinates in the screen buffer.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: st: the string to print

x: x-coordinate of the upper, left corner of the first character
y: y-coordinate of the upper, left corner of the first character

Usage: myGLCD.print(“Hello World”,CENTER,0); // Print “Hello World” centered at the top of the screen

printNumI(num, x, y);

Print an integer number at the specified coordinates in the screen buffer.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: num: the value to print (-2,147,483,648 to 2,147,483,647) INTEGERS ONLY

x: x-coordinate of the upper, left corner of the first digit/sign
y: y-coordinate of the upper, left corner of the first digit/sign

Usage: myGLCD.print(num,CENTER,0); // Print the value of “num” centered at the top of the screen

printNumF(num, dec, x, y);

Print a floating-point number at the specified coordinates in the screen buffer.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.
WARNING: Floating point numbers are not exact, and may yield strange results when compared. Use at your own discretion.

Parameters: num: the value to print (See note)

dec: digits in the fractional part (1-5) 0 is not supported. Use printNumI() instead.
x: x-coordinate of the upper, left corner of the first digit/sign (0-239)
y: y-coordinate of the upper, left corner of the first digit/sign (0-319)

Usage: myGLCD.print(num, 3, CENTER,0); // Print the value of “num” with 3 fractional digits top centered
Notes: Supported range depends on the number of fractional digits used.

Approx range is +/- 2*(10^(9-dec))

setFont(fontname);

Select font to use with print(), printNumI() and printNumF().

Parameters: fontname: Name of the array containing the font you wish to use
Usage: myGLCD.setFont(SmallFont); // Select the font called SmallFont
Notes: You must declare the font-array as an external or include it in your sketch.

 Page 5 of 5

drawBitmap (x, y, sx, sy, data[, flash]);

Draw a bitmap on the screen.

Parameters: x: x-coordinate of the upper, left corner of the bitmap
y: y-coordinate of the upper, left corner of the bitmap
sx: width of the bitmap in pixels
sy: height of the bitmap in pixels
data: array containing the bitmap-data
flash: <optional>
 true - data-array is in flash memory (Default)
 false – data-array is in RAM

Usage: myGLCD.drawBitmap(0, 0, 32, 32, bitmap); // Draw a 32x32 pixel bitmap in the upper left corner
Notes: You can use the online-tool “ImageConverter Mono” to convert pictures into compatible arrays.

The online-tool can be found on my website.
Requires that you #include <avr/pgmspace.h>
While the bitmap data MUST be a multiple of 8 pixels high you do not need to display all the rows.
Example: If the bitmap is 24 pixels high and you specify sy=20 only the upper 20 rows will be displayed.

drawLine(x1, y1, x2, y2);

Draw a line between two points.

Parameters: x1: x-coordinate of the start-point

y1: y-coordinate of the start-point
x2: x-coordinate of the end-point
y2: y-coordinate of the end-point

Usage: myGLCD.drawLine(0,0,127,63); // Draw a line from the upper left to the lower right corner

drawRect(x1, y1, x2, y2);

Draw a rectangle between two points.

Parameters: x1: x-coordinate of the start-corner

y1: y-coordinate of the start-corner
x2: x-coordinate of the end-corner
y2: y-coordinate of the end-corner

Usage: myGLCD.drawRect(64,32,127,63); // Draw a rectangle in the lower right corner of the screen

drawRoundRect(x1, y1, x2, y2);

Draw a rectangle with slightly rounded corners between two points.
The minimum size is 5 pixels in both directions. If a smaller size is requested the rectangle will not be drawn.

Parameters: x1: x-coordinate of the start-corner

y1: y-coordinate of the start-corner
x2: x-coordinate of the end-corner
y2: y-coordinate of the end-corner

Usage: myGLCD.drawRoundRect(0,0,63,31); // Draw a rounded rectangle in the upper left corner of the screen

drawCircle(x, y, radius);

Draw a circle with a specified radius.

Parameters: x: x-coordinate of the center of the circle

y: y-coordinate of the center of the circle
radius: radius of the circle in pixels

Usage: myGLCD.drawCircle(63,31,20); // Draw a circle in the middle of the screen with a radius of 20 pixels

